Spaces:
Runtime error
Runtime error
_base_ = [ | |
'../_base_/datasets/coco_panoptic.py', '../_base_/default_runtime.py' | |
] | |
plugin = True | |
plugin_dir = 'projects/instance_segment_anything/' | |
model = dict( | |
type='DetWrapperInstanceSAM', | |
det_wrapper_type='hdetr', | |
det_wrapper_cfg=dict(aux_loss=False, | |
backbone='swin_large', | |
num_classes=91, | |
cache_mode=False, | |
dec_layers=6, | |
dec_n_points=4, | |
dilation=False, | |
dim_feedforward=2048, | |
drop_path_rate=0.5, | |
dropout=0.0, | |
enc_layers=6, | |
enc_n_points=4, | |
focal_alpha=0.25, | |
frozen_weights=None, | |
hidden_dim=256, | |
k_one2many=6, | |
lambda_one2many=1.0, | |
look_forward_twice=True, | |
masks=False, | |
mixed_selection=True, | |
nheads=8, | |
num_feature_levels=4, | |
num_queries_one2many=1500, | |
num_queries_one2one=900, | |
position_embedding='sine', | |
position_embedding_scale=6.283185307179586, | |
remove_difficult=False, | |
topk=300, | |
two_stage=True, | |
use_checkpoint=False, | |
use_fp16=False, | |
use_wandb=False, | |
with_box_refine=True), | |
det_model_ckpt='ckpt/swin_l_hdetr.pth', | |
num_classes=80, | |
model_type='vit_b', | |
sam_checkpoint='ckpt/sam_vit_b_01ec64.pth', | |
use_sam_iou=True, | |
) | |
img_norm_cfg = dict( | |
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | |
# test_pipeline, NOTE the Pad's size_divisor is different from the default | |
# setting (size_divisor=32). While there is little effect on the performance | |
# whether we use the default setting or use size_divisor=1. | |
test_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict( | |
type='MultiScaleFlipAug', | |
img_scale=(1333, 800), | |
flip=False, | |
transforms=[ | |
dict(type='Resize', keep_ratio=True), | |
dict(type='RandomFlip'), | |
dict(type='Normalize', **img_norm_cfg), | |
dict(type='Pad', size_divisor=1), | |
dict(type='ImageToTensor', keys=['img']), | |
dict(type='Collect', keys=['img']) | |
]) | |
] | |
dataset_type = 'CocoDataset' | |
data_root = 'data/coco/' | |
data = dict( | |
samples_per_gpu=1, | |
workers_per_gpu=1, | |
test=dict( | |
type=dataset_type, | |
ann_file=data_root + 'annotations/instances_val2017.json', | |
img_prefix=data_root + 'val2017/', | |
pipeline=test_pipeline)) | |