Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import bisect | |
import collections | |
import copy | |
import math | |
from collections import defaultdict | |
import numpy as np | |
from mmcv.utils import build_from_cfg, print_log | |
from torch.utils.data.dataset import ConcatDataset as _ConcatDataset | |
from .builder import DATASETS, PIPELINES | |
from .coco import CocoDataset | |
class ConcatDataset(_ConcatDataset): | |
"""A wrapper of concatenated dataset. | |
Same as :obj:`torch.utils.data.dataset.ConcatDataset`, but | |
concat the group flag for image aspect ratio. | |
Args: | |
datasets (list[:obj:`Dataset`]): A list of datasets. | |
separate_eval (bool): Whether to evaluate the results | |
separately if it is used as validation dataset. | |
Defaults to True. | |
""" | |
def __init__(self, datasets, separate_eval=True): | |
super(ConcatDataset, self).__init__(datasets) | |
self.CLASSES = datasets[0].CLASSES | |
self.PALETTE = getattr(datasets[0], 'PALETTE', None) | |
self.separate_eval = separate_eval | |
if not separate_eval: | |
if any([isinstance(ds, CocoDataset) for ds in datasets]): | |
raise NotImplementedError( | |
'Evaluating concatenated CocoDataset as a whole is not' | |
' supported! Please set "separate_eval=True"') | |
elif len(set([type(ds) for ds in datasets])) != 1: | |
raise NotImplementedError( | |
'All the datasets should have same types') | |
if hasattr(datasets[0], 'flag'): | |
flags = [] | |
for i in range(0, len(datasets)): | |
flags.append(datasets[i].flag) | |
self.flag = np.concatenate(flags) | |
def get_cat_ids(self, idx): | |
"""Get category ids of concatenated dataset by index. | |
Args: | |
idx (int): Index of data. | |
Returns: | |
list[int]: All categories in the image of specified index. | |
""" | |
if idx < 0: | |
if -idx > len(self): | |
raise ValueError( | |
'absolute value of index should not exceed dataset length') | |
idx = len(self) + idx | |
dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx) | |
if dataset_idx == 0: | |
sample_idx = idx | |
else: | |
sample_idx = idx - self.cumulative_sizes[dataset_idx - 1] | |
return self.datasets[dataset_idx].get_cat_ids(sample_idx) | |
def get_ann_info(self, idx): | |
"""Get annotation of concatenated dataset by index. | |
Args: | |
idx (int): Index of data. | |
Returns: | |
dict: Annotation info of specified index. | |
""" | |
if idx < 0: | |
if -idx > len(self): | |
raise ValueError( | |
'absolute value of index should not exceed dataset length') | |
idx = len(self) + idx | |
dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx) | |
if dataset_idx == 0: | |
sample_idx = idx | |
else: | |
sample_idx = idx - self.cumulative_sizes[dataset_idx - 1] | |
return self.datasets[dataset_idx].get_ann_info(sample_idx) | |
def evaluate(self, results, logger=None, **kwargs): | |
"""Evaluate the results. | |
Args: | |
results (list[list | tuple]): Testing results of the dataset. | |
logger (logging.Logger | str | None): Logger used for printing | |
related information during evaluation. Default: None. | |
Returns: | |
dict[str: float]: AP results of the total dataset or each separate | |
dataset if `self.separate_eval=True`. | |
""" | |
assert len(results) == self.cumulative_sizes[-1], \ | |
('Dataset and results have different sizes: ' | |
f'{self.cumulative_sizes[-1]} v.s. {len(results)}') | |
# Check whether all the datasets support evaluation | |
for dataset in self.datasets: | |
assert hasattr(dataset, 'evaluate'), \ | |
f'{type(dataset)} does not implement evaluate function' | |
if self.separate_eval: | |
dataset_idx = -1 | |
total_eval_results = dict() | |
for size, dataset in zip(self.cumulative_sizes, self.datasets): | |
start_idx = 0 if dataset_idx == -1 else \ | |
self.cumulative_sizes[dataset_idx] | |
end_idx = self.cumulative_sizes[dataset_idx + 1] | |
results_per_dataset = results[start_idx:end_idx] | |
print_log( | |
f'\nEvaluating {dataset.ann_file} with ' | |
f'{len(results_per_dataset)} images now', | |
logger=logger) | |
eval_results_per_dataset = dataset.evaluate( | |
results_per_dataset, logger=logger, **kwargs) | |
dataset_idx += 1 | |
for k, v in eval_results_per_dataset.items(): | |
total_eval_results.update({f'{dataset_idx}_{k}': v}) | |
return total_eval_results | |
elif any([isinstance(ds, CocoDataset) for ds in self.datasets]): | |
raise NotImplementedError( | |
'Evaluating concatenated CocoDataset as a whole is not' | |
' supported! Please set "separate_eval=True"') | |
elif len(set([type(ds) for ds in self.datasets])) != 1: | |
raise NotImplementedError( | |
'All the datasets should have same types') | |
else: | |
original_data_infos = self.datasets[0].data_infos | |
self.datasets[0].data_infos = sum( | |
[dataset.data_infos for dataset in self.datasets], []) | |
eval_results = self.datasets[0].evaluate( | |
results, logger=logger, **kwargs) | |
self.datasets[0].data_infos = original_data_infos | |
return eval_results | |
class RepeatDataset: | |
"""A wrapper of repeated dataset. | |
The length of repeated dataset will be `times` larger than the original | |
dataset. This is useful when the data loading time is long but the dataset | |
is small. Using RepeatDataset can reduce the data loading time between | |
epochs. | |
Args: | |
dataset (:obj:`Dataset`): The dataset to be repeated. | |
times (int): Repeat times. | |
""" | |
def __init__(self, dataset, times): | |
self.dataset = dataset | |
self.times = times | |
self.CLASSES = dataset.CLASSES | |
self.PALETTE = getattr(dataset, 'PALETTE', None) | |
if hasattr(self.dataset, 'flag'): | |
self.flag = np.tile(self.dataset.flag, times) | |
self._ori_len = len(self.dataset) | |
def __getitem__(self, idx): | |
return self.dataset[idx % self._ori_len] | |
def get_cat_ids(self, idx): | |
"""Get category ids of repeat dataset by index. | |
Args: | |
idx (int): Index of data. | |
Returns: | |
list[int]: All categories in the image of specified index. | |
""" | |
return self.dataset.get_cat_ids(idx % self._ori_len) | |
def get_ann_info(self, idx): | |
"""Get annotation of repeat dataset by index. | |
Args: | |
idx (int): Index of data. | |
Returns: | |
dict: Annotation info of specified index. | |
""" | |
return self.dataset.get_ann_info(idx % self._ori_len) | |
def __len__(self): | |
"""Length after repetition.""" | |
return self.times * self._ori_len | |
# Modified from https://github.com/facebookresearch/detectron2/blob/41d475b75a230221e21d9cac5d69655e3415e3a4/detectron2/data/samplers/distributed_sampler.py#L57 # noqa | |
class ClassBalancedDataset: | |
"""A wrapper of repeated dataset with repeat factor. | |
Suitable for training on class imbalanced datasets like LVIS. Following | |
the sampling strategy in the `paper <https://arxiv.org/abs/1908.03195>`_, | |
in each epoch, an image may appear multiple times based on its | |
"repeat factor". | |
The repeat factor for an image is a function of the frequency the rarest | |
category labeled in that image. The "frequency of category c" in [0, 1] | |
is defined by the fraction of images in the training set (without repeats) | |
in which category c appears. | |
The dataset needs to instantiate :func:`self.get_cat_ids` to support | |
ClassBalancedDataset. | |
The repeat factor is computed as followed. | |
1. For each category c, compute the fraction # of images | |
that contain it: :math:`f(c)` | |
2. For each category c, compute the category-level repeat factor: | |
:math:`r(c) = max(1, sqrt(t/f(c)))` | |
3. For each image I, compute the image-level repeat factor: | |
:math:`r(I) = max_{c in I} r(c)` | |
Args: | |
dataset (:obj:`CustomDataset`): The dataset to be repeated. | |
oversample_thr (float): frequency threshold below which data is | |
repeated. For categories with ``f_c >= oversample_thr``, there is | |
no oversampling. For categories with ``f_c < oversample_thr``, the | |
degree of oversampling following the square-root inverse frequency | |
heuristic above. | |
filter_empty_gt (bool, optional): If set true, images without bounding | |
boxes will not be oversampled. Otherwise, they will be categorized | |
as the pure background class and involved into the oversampling. | |
Default: True. | |
""" | |
def __init__(self, dataset, oversample_thr, filter_empty_gt=True): | |
self.dataset = dataset | |
self.oversample_thr = oversample_thr | |
self.filter_empty_gt = filter_empty_gt | |
self.CLASSES = dataset.CLASSES | |
self.PALETTE = getattr(dataset, 'PALETTE', None) | |
repeat_factors = self._get_repeat_factors(dataset, oversample_thr) | |
repeat_indices = [] | |
for dataset_idx, repeat_factor in enumerate(repeat_factors): | |
repeat_indices.extend([dataset_idx] * math.ceil(repeat_factor)) | |
self.repeat_indices = repeat_indices | |
flags = [] | |
if hasattr(self.dataset, 'flag'): | |
for flag, repeat_factor in zip(self.dataset.flag, repeat_factors): | |
flags.extend([flag] * int(math.ceil(repeat_factor))) | |
assert len(flags) == len(repeat_indices) | |
self.flag = np.asarray(flags, dtype=np.uint8) | |
def _get_repeat_factors(self, dataset, repeat_thr): | |
"""Get repeat factor for each images in the dataset. | |
Args: | |
dataset (:obj:`CustomDataset`): The dataset | |
repeat_thr (float): The threshold of frequency. If an image | |
contains the categories whose frequency below the threshold, | |
it would be repeated. | |
Returns: | |
list[float]: The repeat factors for each images in the dataset. | |
""" | |
# 1. For each category c, compute the fraction # of images | |
# that contain it: f(c) | |
category_freq = defaultdict(int) | |
num_images = len(dataset) | |
for idx in range(num_images): | |
cat_ids = set(self.dataset.get_cat_ids(idx)) | |
if len(cat_ids) == 0 and not self.filter_empty_gt: | |
cat_ids = set([len(self.CLASSES)]) | |
for cat_id in cat_ids: | |
category_freq[cat_id] += 1 | |
for k, v in category_freq.items(): | |
category_freq[k] = v / num_images | |
# 2. For each category c, compute the category-level repeat factor: | |
# r(c) = max(1, sqrt(t/f(c))) | |
category_repeat = { | |
cat_id: max(1.0, math.sqrt(repeat_thr / cat_freq)) | |
for cat_id, cat_freq in category_freq.items() | |
} | |
# 3. For each image I, compute the image-level repeat factor: | |
# r(I) = max_{c in I} r(c) | |
repeat_factors = [] | |
for idx in range(num_images): | |
cat_ids = set(self.dataset.get_cat_ids(idx)) | |
if len(cat_ids) == 0 and not self.filter_empty_gt: | |
cat_ids = set([len(self.CLASSES)]) | |
repeat_factor = 1 | |
if len(cat_ids) > 0: | |
repeat_factor = max( | |
{category_repeat[cat_id] | |
for cat_id in cat_ids}) | |
repeat_factors.append(repeat_factor) | |
return repeat_factors | |
def __getitem__(self, idx): | |
ori_index = self.repeat_indices[idx] | |
return self.dataset[ori_index] | |
def get_ann_info(self, idx): | |
"""Get annotation of dataset by index. | |
Args: | |
idx (int): Index of data. | |
Returns: | |
dict: Annotation info of specified index. | |
""" | |
ori_index = self.repeat_indices[idx] | |
return self.dataset.get_ann_info(ori_index) | |
def __len__(self): | |
"""Length after repetition.""" | |
return len(self.repeat_indices) | |
class MultiImageMixDataset: | |
"""A wrapper of multiple images mixed dataset. | |
Suitable for training on multiple images mixed data augmentation like | |
mosaic and mixup. For the augmentation pipeline of mixed image data, | |
the `get_indexes` method needs to be provided to obtain the image | |
indexes, and you can set `skip_flags` to change the pipeline running | |
process. At the same time, we provide the `dynamic_scale` parameter | |
to dynamically change the output image size. | |
Args: | |
dataset (:obj:`CustomDataset`): The dataset to be mixed. | |
pipeline (Sequence[dict]): Sequence of transform object or | |
config dict to be composed. | |
dynamic_scale (tuple[int], optional): The image scale can be changed | |
dynamically. Default to None. It is deprecated. | |
skip_type_keys (list[str], optional): Sequence of type string to | |
be skip pipeline. Default to None. | |
max_refetch (int): The maximum number of retry iterations for getting | |
valid results from the pipeline. If the number of iterations is | |
greater than `max_refetch`, but results is still None, then the | |
iteration is terminated and raise the error. Default: 15. | |
""" | |
def __init__(self, | |
dataset, | |
pipeline, | |
dynamic_scale=None, | |
skip_type_keys=None, | |
max_refetch=15): | |
if dynamic_scale is not None: | |
raise RuntimeError( | |
'dynamic_scale is deprecated. Please use Resize pipeline ' | |
'to achieve similar functions') | |
assert isinstance(pipeline, collections.abc.Sequence) | |
if skip_type_keys is not None: | |
assert all([ | |
isinstance(skip_type_key, str) | |
for skip_type_key in skip_type_keys | |
]) | |
self._skip_type_keys = skip_type_keys | |
self.pipeline = [] | |
self.pipeline_types = [] | |
for transform in pipeline: | |
if isinstance(transform, dict): | |
self.pipeline_types.append(transform['type']) | |
transform = build_from_cfg(transform, PIPELINES) | |
self.pipeline.append(transform) | |
else: | |
raise TypeError('pipeline must be a dict') | |
self.dataset = dataset | |
self.CLASSES = dataset.CLASSES | |
self.PALETTE = getattr(dataset, 'PALETTE', None) | |
if hasattr(self.dataset, 'flag'): | |
self.flag = dataset.flag | |
self.num_samples = len(dataset) | |
self.max_refetch = max_refetch | |
def __len__(self): | |
return self.num_samples | |
def __getitem__(self, idx): | |
results = copy.deepcopy(self.dataset[idx]) | |
for (transform, transform_type) in zip(self.pipeline, | |
self.pipeline_types): | |
if self._skip_type_keys is not None and \ | |
transform_type in self._skip_type_keys: | |
continue | |
if hasattr(transform, 'get_indexes'): | |
for i in range(self.max_refetch): | |
# Make sure the results passed the loading pipeline | |
# of the original dataset is not None. | |
indexes = transform.get_indexes(self.dataset) | |
if not isinstance(indexes, collections.abc.Sequence): | |
indexes = [indexes] | |
mix_results = [ | |
copy.deepcopy(self.dataset[index]) for index in indexes | |
] | |
if None not in mix_results: | |
results['mix_results'] = mix_results | |
break | |
else: | |
raise RuntimeError( | |
'The loading pipeline of the original dataset' | |
' always return None. Please check the correctness ' | |
'of the dataset and its pipeline.') | |
for i in range(self.max_refetch): | |
# To confirm the results passed the training pipeline | |
# of the wrapper is not None. | |
updated_results = transform(copy.deepcopy(results)) | |
if updated_results is not None: | |
results = updated_results | |
break | |
else: | |
raise RuntimeError( | |
'The training pipeline of the dataset wrapper' | |
' always return None.Please check the correctness ' | |
'of the dataset and its pipeline.') | |
if 'mix_results' in results: | |
results.pop('mix_results') | |
return results | |
def update_skip_type_keys(self, skip_type_keys): | |
"""Update skip_type_keys. It is called by an external hook. | |
Args: | |
skip_type_keys (list[str], optional): Sequence of type | |
string to be skip pipeline. | |
""" | |
assert all([ | |
isinstance(skip_type_key, str) for skip_type_key in skip_type_keys | |
]) | |
self._skip_type_keys = skip_type_keys | |