Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import warnings | |
import torch.nn as nn | |
import torch.utils.checkpoint as cp | |
from mmcv.cnn import build_conv_layer, build_norm_layer, build_plugin_layer | |
from mmcv.runner import BaseModule | |
from torch.nn.modules.batchnorm import _BatchNorm | |
from ..builder import BACKBONES | |
from ..utils import ResLayer | |
class BasicBlock(BaseModule): | |
expansion = 1 | |
def __init__(self, | |
inplanes, | |
planes, | |
stride=1, | |
dilation=1, | |
downsample=None, | |
style='pytorch', | |
with_cp=False, | |
conv_cfg=None, | |
norm_cfg=dict(type='BN'), | |
dcn=None, | |
plugins=None, | |
init_cfg=None): | |
super(BasicBlock, self).__init__(init_cfg) | |
assert dcn is None, 'Not implemented yet.' | |
assert plugins is None, 'Not implemented yet.' | |
self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1) | |
self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2) | |
self.conv1 = build_conv_layer( | |
conv_cfg, | |
inplanes, | |
planes, | |
3, | |
stride=stride, | |
padding=dilation, | |
dilation=dilation, | |
bias=False) | |
self.add_module(self.norm1_name, norm1) | |
self.conv2 = build_conv_layer( | |
conv_cfg, planes, planes, 3, padding=1, bias=False) | |
self.add_module(self.norm2_name, norm2) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
self.dilation = dilation | |
self.with_cp = with_cp | |
def norm1(self): | |
"""nn.Module: normalization layer after the first convolution layer""" | |
return getattr(self, self.norm1_name) | |
def norm2(self): | |
"""nn.Module: normalization layer after the second convolution layer""" | |
return getattr(self, self.norm2_name) | |
def forward(self, x): | |
"""Forward function.""" | |
def _inner_forward(x): | |
identity = x | |
out = self.conv1(x) | |
out = self.norm1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.norm2(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
return out | |
if self.with_cp and x.requires_grad: | |
out = cp.checkpoint(_inner_forward, x) | |
else: | |
out = _inner_forward(x) | |
out = self.relu(out) | |
return out | |
class Bottleneck(BaseModule): | |
expansion = 4 | |
def __init__(self, | |
inplanes, | |
planes, | |
stride=1, | |
dilation=1, | |
downsample=None, | |
style='pytorch', | |
with_cp=False, | |
conv_cfg=None, | |
norm_cfg=dict(type='BN'), | |
dcn=None, | |
plugins=None, | |
init_cfg=None): | |
"""Bottleneck block for ResNet. | |
If style is "pytorch", the stride-two layer is the 3x3 conv layer, if | |
it is "caffe", the stride-two layer is the first 1x1 conv layer. | |
""" | |
super(Bottleneck, self).__init__(init_cfg) | |
assert style in ['pytorch', 'caffe'] | |
assert dcn is None or isinstance(dcn, dict) | |
assert plugins is None or isinstance(plugins, list) | |
if plugins is not None: | |
allowed_position = ['after_conv1', 'after_conv2', 'after_conv3'] | |
assert all(p['position'] in allowed_position for p in plugins) | |
self.inplanes = inplanes | |
self.planes = planes | |
self.stride = stride | |
self.dilation = dilation | |
self.style = style | |
self.with_cp = with_cp | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.dcn = dcn | |
self.with_dcn = dcn is not None | |
self.plugins = plugins | |
self.with_plugins = plugins is not None | |
if self.with_plugins: | |
# collect plugins for conv1/conv2/conv3 | |
self.after_conv1_plugins = [ | |
plugin['cfg'] for plugin in plugins | |
if plugin['position'] == 'after_conv1' | |
] | |
self.after_conv2_plugins = [ | |
plugin['cfg'] for plugin in plugins | |
if plugin['position'] == 'after_conv2' | |
] | |
self.after_conv3_plugins = [ | |
plugin['cfg'] for plugin in plugins | |
if plugin['position'] == 'after_conv3' | |
] | |
if self.style == 'pytorch': | |
self.conv1_stride = 1 | |
self.conv2_stride = stride | |
else: | |
self.conv1_stride = stride | |
self.conv2_stride = 1 | |
self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1) | |
self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2) | |
self.norm3_name, norm3 = build_norm_layer( | |
norm_cfg, planes * self.expansion, postfix=3) | |
self.conv1 = build_conv_layer( | |
conv_cfg, | |
inplanes, | |
planes, | |
kernel_size=1, | |
stride=self.conv1_stride, | |
bias=False) | |
self.add_module(self.norm1_name, norm1) | |
fallback_on_stride = False | |
if self.with_dcn: | |
fallback_on_stride = dcn.pop('fallback_on_stride', False) | |
if not self.with_dcn or fallback_on_stride: | |
self.conv2 = build_conv_layer( | |
conv_cfg, | |
planes, | |
planes, | |
kernel_size=3, | |
stride=self.conv2_stride, | |
padding=dilation, | |
dilation=dilation, | |
bias=False) | |
else: | |
assert self.conv_cfg is None, 'conv_cfg must be None for DCN' | |
self.conv2 = build_conv_layer( | |
dcn, | |
planes, | |
planes, | |
kernel_size=3, | |
stride=self.conv2_stride, | |
padding=dilation, | |
dilation=dilation, | |
bias=False) | |
self.add_module(self.norm2_name, norm2) | |
self.conv3 = build_conv_layer( | |
conv_cfg, | |
planes, | |
planes * self.expansion, | |
kernel_size=1, | |
bias=False) | |
self.add_module(self.norm3_name, norm3) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
if self.with_plugins: | |
self.after_conv1_plugin_names = self.make_block_plugins( | |
planes, self.after_conv1_plugins) | |
self.after_conv2_plugin_names = self.make_block_plugins( | |
planes, self.after_conv2_plugins) | |
self.after_conv3_plugin_names = self.make_block_plugins( | |
planes * self.expansion, self.after_conv3_plugins) | |
def make_block_plugins(self, in_channels, plugins): | |
"""make plugins for block. | |
Args: | |
in_channels (int): Input channels of plugin. | |
plugins (list[dict]): List of plugins cfg to build. | |
Returns: | |
list[str]: List of the names of plugin. | |
""" | |
assert isinstance(plugins, list) | |
plugin_names = [] | |
for plugin in plugins: | |
plugin = plugin.copy() | |
name, layer = build_plugin_layer( | |
plugin, | |
in_channels=in_channels, | |
postfix=plugin.pop('postfix', '')) | |
assert not hasattr(self, name), f'duplicate plugin {name}' | |
self.add_module(name, layer) | |
plugin_names.append(name) | |
return plugin_names | |
def forward_plugin(self, x, plugin_names): | |
out = x | |
for name in plugin_names: | |
out = getattr(self, name)(out) | |
return out | |
def norm1(self): | |
"""nn.Module: normalization layer after the first convolution layer""" | |
return getattr(self, self.norm1_name) | |
def norm2(self): | |
"""nn.Module: normalization layer after the second convolution layer""" | |
return getattr(self, self.norm2_name) | |
def norm3(self): | |
"""nn.Module: normalization layer after the third convolution layer""" | |
return getattr(self, self.norm3_name) | |
def forward(self, x): | |
"""Forward function.""" | |
def _inner_forward(x): | |
identity = x | |
out = self.conv1(x) | |
out = self.norm1(out) | |
out = self.relu(out) | |
if self.with_plugins: | |
out = self.forward_plugin(out, self.after_conv1_plugin_names) | |
out = self.conv2(out) | |
out = self.norm2(out) | |
out = self.relu(out) | |
if self.with_plugins: | |
out = self.forward_plugin(out, self.after_conv2_plugin_names) | |
out = self.conv3(out) | |
out = self.norm3(out) | |
if self.with_plugins: | |
out = self.forward_plugin(out, self.after_conv3_plugin_names) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
return out | |
if self.with_cp and x.requires_grad: | |
out = cp.checkpoint(_inner_forward, x) | |
else: | |
out = _inner_forward(x) | |
out = self.relu(out) | |
return out | |
class ResNet(BaseModule): | |
"""ResNet backbone. | |
Args: | |
depth (int): Depth of resnet, from {18, 34, 50, 101, 152}. | |
stem_channels (int | None): Number of stem channels. If not specified, | |
it will be the same as `base_channels`. Default: None. | |
base_channels (int): Number of base channels of res layer. Default: 64. | |
in_channels (int): Number of input image channels. Default: 3. | |
num_stages (int): Resnet stages. Default: 4. | |
strides (Sequence[int]): Strides of the first block of each stage. | |
dilations (Sequence[int]): Dilation of each stage. | |
out_indices (Sequence[int]): Output from which stages. | |
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two | |
layer is the 3x3 conv layer, otherwise the stride-two layer is | |
the first 1x1 conv layer. | |
deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv | |
avg_down (bool): Use AvgPool instead of stride conv when | |
downsampling in the bottleneck. | |
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
-1 means not freezing any parameters. | |
norm_cfg (dict): Dictionary to construct and config norm layer. | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. | |
plugins (list[dict]): List of plugins for stages, each dict contains: | |
- cfg (dict, required): Cfg dict to build plugin. | |
- position (str, required): Position inside block to insert | |
plugin, options are 'after_conv1', 'after_conv2', 'after_conv3'. | |
- stages (tuple[bool], optional): Stages to apply plugin, length | |
should be same as 'num_stages'. | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
memory while slowing down the training speed. | |
zero_init_residual (bool): Whether to use zero init for last norm layer | |
in resblocks to let them behave as identity. | |
pretrained (str, optional): model pretrained path. Default: None | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Default: None | |
Example: | |
>>> from mmdet.models import ResNet | |
>>> import torch | |
>>> self = ResNet(depth=18) | |
>>> self.eval() | |
>>> inputs = torch.rand(1, 3, 32, 32) | |
>>> level_outputs = self.forward(inputs) | |
>>> for level_out in level_outputs: | |
... print(tuple(level_out.shape)) | |
(1, 64, 8, 8) | |
(1, 128, 4, 4) | |
(1, 256, 2, 2) | |
(1, 512, 1, 1) | |
""" | |
arch_settings = { | |
18: (BasicBlock, (2, 2, 2, 2)), | |
34: (BasicBlock, (3, 4, 6, 3)), | |
50: (Bottleneck, (3, 4, 6, 3)), | |
101: (Bottleneck, (3, 4, 23, 3)), | |
152: (Bottleneck, (3, 8, 36, 3)) | |
} | |
def __init__(self, | |
depth, | |
in_channels=3, | |
stem_channels=None, | |
base_channels=64, | |
num_stages=4, | |
strides=(1, 2, 2, 2), | |
dilations=(1, 1, 1, 1), | |
out_indices=(0, 1, 2, 3), | |
style='pytorch', | |
deep_stem=False, | |
avg_down=False, | |
frozen_stages=-1, | |
conv_cfg=None, | |
norm_cfg=dict(type='BN', requires_grad=True), | |
norm_eval=True, | |
dcn=None, | |
stage_with_dcn=(False, False, False, False), | |
plugins=None, | |
with_cp=False, | |
zero_init_residual=True, | |
pretrained=None, | |
init_cfg=None): | |
super(ResNet, self).__init__(init_cfg) | |
self.zero_init_residual = zero_init_residual | |
if depth not in self.arch_settings: | |
raise KeyError(f'invalid depth {depth} for resnet') | |
block_init_cfg = None | |
assert not (init_cfg and pretrained), \ | |
'init_cfg and pretrained cannot be specified at the same time' | |
if isinstance(pretrained, str): | |
warnings.warn('DeprecationWarning: pretrained is deprecated, ' | |
'please use "init_cfg" instead') | |
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) | |
elif pretrained is None: | |
if init_cfg is None: | |
self.init_cfg = [ | |
dict(type='Kaiming', layer='Conv2d'), | |
dict( | |
type='Constant', | |
val=1, | |
layer=['_BatchNorm', 'GroupNorm']) | |
] | |
block = self.arch_settings[depth][0] | |
if self.zero_init_residual: | |
if block is BasicBlock: | |
block_init_cfg = dict( | |
type='Constant', | |
val=0, | |
override=dict(name='norm2')) | |
elif block is Bottleneck: | |
block_init_cfg = dict( | |
type='Constant', | |
val=0, | |
override=dict(name='norm3')) | |
else: | |
raise TypeError('pretrained must be a str or None') | |
self.depth = depth | |
if stem_channels is None: | |
stem_channels = base_channels | |
self.stem_channels = stem_channels | |
self.base_channels = base_channels | |
self.num_stages = num_stages | |
assert num_stages >= 1 and num_stages <= 4 | |
self.strides = strides | |
self.dilations = dilations | |
assert len(strides) == len(dilations) == num_stages | |
self.out_indices = out_indices | |
assert max(out_indices) < num_stages | |
self.style = style | |
self.deep_stem = deep_stem | |
self.avg_down = avg_down | |
self.frozen_stages = frozen_stages | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.with_cp = with_cp | |
self.norm_eval = norm_eval | |
self.dcn = dcn | |
self.stage_with_dcn = stage_with_dcn | |
if dcn is not None: | |
assert len(stage_with_dcn) == num_stages | |
self.plugins = plugins | |
self.block, stage_blocks = self.arch_settings[depth] | |
self.stage_blocks = stage_blocks[:num_stages] | |
self.inplanes = stem_channels | |
self._make_stem_layer(in_channels, stem_channels) | |
self.res_layers = [] | |
for i, num_blocks in enumerate(self.stage_blocks): | |
stride = strides[i] | |
dilation = dilations[i] | |
dcn = self.dcn if self.stage_with_dcn[i] else None | |
if plugins is not None: | |
stage_plugins = self.make_stage_plugins(plugins, i) | |
else: | |
stage_plugins = None | |
planes = base_channels * 2**i | |
res_layer = self.make_res_layer( | |
block=self.block, | |
inplanes=self.inplanes, | |
planes=planes, | |
num_blocks=num_blocks, | |
stride=stride, | |
dilation=dilation, | |
style=self.style, | |
avg_down=self.avg_down, | |
with_cp=with_cp, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
dcn=dcn, | |
plugins=stage_plugins, | |
init_cfg=block_init_cfg) | |
self.inplanes = planes * self.block.expansion | |
layer_name = f'layer{i + 1}' | |
self.add_module(layer_name, res_layer) | |
self.res_layers.append(layer_name) | |
self._freeze_stages() | |
self.feat_dim = self.block.expansion * base_channels * 2**( | |
len(self.stage_blocks) - 1) | |
def make_stage_plugins(self, plugins, stage_idx): | |
"""Make plugins for ResNet ``stage_idx`` th stage. | |
Currently we support to insert ``context_block``, | |
``empirical_attention_block``, ``nonlocal_block`` into the backbone | |
like ResNet/ResNeXt. They could be inserted after conv1/conv2/conv3 of | |
Bottleneck. | |
An example of plugins format could be: | |
Examples: | |
>>> plugins=[ | |
... dict(cfg=dict(type='xxx', arg1='xxx'), | |
... stages=(False, True, True, True), | |
... position='after_conv2'), | |
... dict(cfg=dict(type='yyy'), | |
... stages=(True, True, True, True), | |
... position='after_conv3'), | |
... dict(cfg=dict(type='zzz', postfix='1'), | |
... stages=(True, True, True, True), | |
... position='after_conv3'), | |
... dict(cfg=dict(type='zzz', postfix='2'), | |
... stages=(True, True, True, True), | |
... position='after_conv3') | |
... ] | |
>>> self = ResNet(depth=18) | |
>>> stage_plugins = self.make_stage_plugins(plugins, 0) | |
>>> assert len(stage_plugins) == 3 | |
Suppose ``stage_idx=0``, the structure of blocks in the stage would be: | |
.. code-block:: none | |
conv1-> conv2->conv3->yyy->zzz1->zzz2 | |
Suppose 'stage_idx=1', the structure of blocks in the stage would be: | |
.. code-block:: none | |
conv1-> conv2->xxx->conv3->yyy->zzz1->zzz2 | |
If stages is missing, the plugin would be applied to all stages. | |
Args: | |
plugins (list[dict]): List of plugins cfg to build. The postfix is | |
required if multiple same type plugins are inserted. | |
stage_idx (int): Index of stage to build | |
Returns: | |
list[dict]: Plugins for current stage | |
""" | |
stage_plugins = [] | |
for plugin in plugins: | |
plugin = plugin.copy() | |
stages = plugin.pop('stages', None) | |
assert stages is None or len(stages) == self.num_stages | |
# whether to insert plugin into current stage | |
if stages is None or stages[stage_idx]: | |
stage_plugins.append(plugin) | |
return stage_plugins | |
def make_res_layer(self, **kwargs): | |
"""Pack all blocks in a stage into a ``ResLayer``.""" | |
return ResLayer(**kwargs) | |
def norm1(self): | |
"""nn.Module: the normalization layer named "norm1" """ | |
return getattr(self, self.norm1_name) | |
def _make_stem_layer(self, in_channels, stem_channels): | |
if self.deep_stem: | |
self.stem = nn.Sequential( | |
build_conv_layer( | |
self.conv_cfg, | |
in_channels, | |
stem_channels // 2, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
bias=False), | |
build_norm_layer(self.norm_cfg, stem_channels // 2)[1], | |
nn.ReLU(inplace=True), | |
build_conv_layer( | |
self.conv_cfg, | |
stem_channels // 2, | |
stem_channels // 2, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False), | |
build_norm_layer(self.norm_cfg, stem_channels // 2)[1], | |
nn.ReLU(inplace=True), | |
build_conv_layer( | |
self.conv_cfg, | |
stem_channels // 2, | |
stem_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False), | |
build_norm_layer(self.norm_cfg, stem_channels)[1], | |
nn.ReLU(inplace=True)) | |
else: | |
self.conv1 = build_conv_layer( | |
self.conv_cfg, | |
in_channels, | |
stem_channels, | |
kernel_size=7, | |
stride=2, | |
padding=3, | |
bias=False) | |
self.norm1_name, norm1 = build_norm_layer( | |
self.norm_cfg, stem_channels, postfix=1) | |
self.add_module(self.norm1_name, norm1) | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
def _freeze_stages(self): | |
if self.frozen_stages >= 0: | |
if self.deep_stem: | |
self.stem.eval() | |
for param in self.stem.parameters(): | |
param.requires_grad = False | |
else: | |
self.norm1.eval() | |
for m in [self.conv1, self.norm1]: | |
for param in m.parameters(): | |
param.requires_grad = False | |
for i in range(1, self.frozen_stages + 1): | |
m = getattr(self, f'layer{i}') | |
m.eval() | |
for param in m.parameters(): | |
param.requires_grad = False | |
def forward(self, x): | |
"""Forward function.""" | |
if self.deep_stem: | |
x = self.stem(x) | |
else: | |
x = self.conv1(x) | |
x = self.norm1(x) | |
x = self.relu(x) | |
x = self.maxpool(x) | |
outs = [] | |
for i, layer_name in enumerate(self.res_layers): | |
res_layer = getattr(self, layer_name) | |
x = res_layer(x) | |
if i in self.out_indices: | |
outs.append(x) | |
return tuple(outs) | |
def train(self, mode=True): | |
"""Convert the model into training mode while keep normalization layer | |
freezed.""" | |
super(ResNet, self).train(mode) | |
self._freeze_stages() | |
if mode and self.norm_eval: | |
for m in self.modules(): | |
# trick: eval have effect on BatchNorm only | |
if isinstance(m, _BatchNorm): | |
m.eval() | |
class ResNetV1d(ResNet): | |
r"""ResNetV1d variant described in `Bag of Tricks | |
<https://arxiv.org/pdf/1812.01187.pdf>`_. | |
Compared with default ResNet(ResNetV1b), ResNetV1d replaces the 7x7 conv in | |
the input stem with three 3x3 convs. And in the downsampling block, a 2x2 | |
avg_pool with stride 2 is added before conv, whose stride is changed to 1. | |
""" | |
def __init__(self, **kwargs): | |
super(ResNetV1d, self).__init__( | |
deep_stem=True, avg_down=True, **kwargs) | |