Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import warnings | |
import torch.nn as nn | |
from mmcv.cnn import VGG | |
from mmcv.runner import BaseModule | |
from ..builder import BACKBONES | |
from ..necks import ssd_neck | |
class SSDVGG(VGG, BaseModule): | |
"""VGG Backbone network for single-shot-detection. | |
Args: | |
depth (int): Depth of vgg, from {11, 13, 16, 19}. | |
with_last_pool (bool): Whether to add a pooling layer at the last | |
of the model | |
ceil_mode (bool): When True, will use `ceil` instead of `floor` | |
to compute the output shape. | |
out_indices (Sequence[int]): Output from which stages. | |
out_feature_indices (Sequence[int]): Output from which feature map. | |
pretrained (str, optional): model pretrained path. Default: None | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Default: None | |
input_size (int, optional): Deprecated argumment. | |
Width and height of input, from {300, 512}. | |
l2_norm_scale (float, optional) : Deprecated argumment. | |
L2 normalization layer init scale. | |
Example: | |
>>> self = SSDVGG(input_size=300, depth=11) | |
>>> self.eval() | |
>>> inputs = torch.rand(1, 3, 300, 300) | |
>>> level_outputs = self.forward(inputs) | |
>>> for level_out in level_outputs: | |
... print(tuple(level_out.shape)) | |
(1, 1024, 19, 19) | |
(1, 512, 10, 10) | |
(1, 256, 5, 5) | |
(1, 256, 3, 3) | |
(1, 256, 1, 1) | |
""" | |
extra_setting = { | |
300: (256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256), | |
512: (256, 'S', 512, 128, 'S', 256, 128, 'S', 256, 128, 'S', 256, 128), | |
} | |
def __init__(self, | |
depth, | |
with_last_pool=False, | |
ceil_mode=True, | |
out_indices=(3, 4), | |
out_feature_indices=(22, 34), | |
pretrained=None, | |
init_cfg=None, | |
input_size=None, | |
l2_norm_scale=None): | |
# TODO: in_channels for mmcv.VGG | |
super(SSDVGG, self).__init__( | |
depth, | |
with_last_pool=with_last_pool, | |
ceil_mode=ceil_mode, | |
out_indices=out_indices) | |
self.features.add_module( | |
str(len(self.features)), | |
nn.MaxPool2d(kernel_size=3, stride=1, padding=1)) | |
self.features.add_module( | |
str(len(self.features)), | |
nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6)) | |
self.features.add_module( | |
str(len(self.features)), nn.ReLU(inplace=True)) | |
self.features.add_module( | |
str(len(self.features)), nn.Conv2d(1024, 1024, kernel_size=1)) | |
self.features.add_module( | |
str(len(self.features)), nn.ReLU(inplace=True)) | |
self.out_feature_indices = out_feature_indices | |
assert not (init_cfg and pretrained), \ | |
'init_cfg and pretrained cannot be specified at the same time' | |
if init_cfg is not None: | |
self.init_cfg = init_cfg | |
elif isinstance(pretrained, str): | |
warnings.warn('DeprecationWarning: pretrained is deprecated, ' | |
'please use "init_cfg" instead') | |
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) | |
elif pretrained is None: | |
self.init_cfg = [ | |
dict(type='Kaiming', layer='Conv2d'), | |
dict(type='Constant', val=1, layer='BatchNorm2d'), | |
dict(type='Normal', std=0.01, layer='Linear'), | |
] | |
else: | |
raise TypeError('pretrained must be a str or None') | |
if input_size is not None: | |
warnings.warn('DeprecationWarning: input_size is deprecated') | |
if l2_norm_scale is not None: | |
warnings.warn('DeprecationWarning: l2_norm_scale in VGG is ' | |
'deprecated, it has been moved to SSDNeck.') | |
def init_weights(self, pretrained=None): | |
super(VGG, self).init_weights() | |
def forward(self, x): | |
"""Forward function.""" | |
outs = [] | |
for i, layer in enumerate(self.features): | |
x = layer(x) | |
if i in self.out_feature_indices: | |
outs.append(x) | |
if len(outs) == 1: | |
return outs[0] | |
else: | |
return tuple(outs) | |
class L2Norm(ssd_neck.L2Norm): | |
def __init__(self, **kwargs): | |
super(L2Norm, self).__init__(**kwargs) | |
warnings.warn('DeprecationWarning: L2Norm in ssd_vgg.py ' | |
'is deprecated, please use L2Norm in ' | |
'mmdet/models/necks/ssd_neck.py instead') | |