RockeyCoss
add code files”
51f6859
raw
history blame
6.95 kB
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import (build_activation_layer, build_norm_layer, constant_init,
normal_init)
from mmcv.ops.modulated_deform_conv import ModulatedDeformConv2d
from mmcv.runner import BaseModule
from ..builder import NECKS
from ..utils import DyReLU
# Reference:
# https://github.com/microsoft/DynamicHead
# https://github.com/jshilong/SEPC
class DyDCNv2(nn.Module):
"""ModulatedDeformConv2d with normalization layer used in DyHead.
This module cannot be configured with `conv_cfg=dict(type='DCNv2')`
because DyHead calculates offset and mask from middle-level feature.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
stride (int | tuple[int], optional): Stride of the convolution.
Default: 1.
norm_cfg (dict, optional): Config dict for normalization layer.
Default: dict(type='GN', num_groups=16, requires_grad=True).
"""
def __init__(self,
in_channels,
out_channels,
stride=1,
norm_cfg=dict(type='GN', num_groups=16, requires_grad=True)):
super().__init__()
self.with_norm = norm_cfg is not None
bias = not self.with_norm
self.conv = ModulatedDeformConv2d(
in_channels, out_channels, 3, stride=stride, padding=1, bias=bias)
if self.with_norm:
self.norm = build_norm_layer(norm_cfg, out_channels)[1]
def forward(self, x, offset, mask):
"""Forward function."""
x = self.conv(x.contiguous(), offset.contiguous(), mask)
if self.with_norm:
x = self.norm(x)
return x
class DyHeadBlock(nn.Module):
"""DyHead Block with three types of attention.
HSigmoid arguments in default act_cfg follow official code, not paper.
https://github.com/microsoft/DynamicHead/blob/master/dyhead/dyrelu.py
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
zero_init_offset (bool, optional): Whether to use zero init for
`spatial_conv_offset`. Default: True.
act_cfg (dict, optional): Config dict for the last activation layer of
scale-aware attention. Default: dict(type='HSigmoid', bias=3.0,
divisor=6.0).
"""
def __init__(self,
in_channels,
out_channels,
zero_init_offset=True,
act_cfg=dict(type='HSigmoid', bias=3.0, divisor=6.0)):
super().__init__()
self.zero_init_offset = zero_init_offset
# (offset_x, offset_y, mask) * kernel_size_y * kernel_size_x
self.offset_and_mask_dim = 3 * 3 * 3
self.offset_dim = 2 * 3 * 3
self.spatial_conv_high = DyDCNv2(in_channels, out_channels)
self.spatial_conv_mid = DyDCNv2(in_channels, out_channels)
self.spatial_conv_low = DyDCNv2(in_channels, out_channels, stride=2)
self.spatial_conv_offset = nn.Conv2d(
in_channels, self.offset_and_mask_dim, 3, padding=1)
self.scale_attn_module = nn.Sequential(
nn.AdaptiveAvgPool2d(1), nn.Conv2d(out_channels, 1, 1),
nn.ReLU(inplace=True), build_activation_layer(act_cfg))
self.task_attn_module = DyReLU(out_channels)
self._init_weights()
def _init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, 0, 0.01)
if self.zero_init_offset:
constant_init(self.spatial_conv_offset, 0)
def forward(self, x):
"""Forward function."""
outs = []
for level in range(len(x)):
# calculate offset and mask of DCNv2 from middle-level feature
offset_and_mask = self.spatial_conv_offset(x[level])
offset = offset_and_mask[:, :self.offset_dim, :, :]
mask = offset_and_mask[:, self.offset_dim:, :, :].sigmoid()
mid_feat = self.spatial_conv_mid(x[level], offset, mask)
sum_feat = mid_feat * self.scale_attn_module(mid_feat)
summed_levels = 1
if level > 0:
low_feat = self.spatial_conv_low(x[level - 1], offset, mask)
sum_feat = sum_feat + \
low_feat * self.scale_attn_module(low_feat)
summed_levels += 1
if level < len(x) - 1:
# this upsample order is weird, but faster than natural order
# https://github.com/microsoft/DynamicHead/issues/25
high_feat = F.interpolate(
self.spatial_conv_high(x[level + 1], offset, mask),
size=x[level].shape[-2:],
mode='bilinear',
align_corners=True)
sum_feat = sum_feat + high_feat * \
self.scale_attn_module(high_feat)
summed_levels += 1
outs.append(self.task_attn_module(sum_feat / summed_levels))
return outs
@NECKS.register_module()
class DyHead(BaseModule):
"""DyHead neck consisting of multiple DyHead Blocks.
See `Dynamic Head: Unifying Object Detection Heads with Attentions
<https://arxiv.org/abs/2106.08322>`_ for details.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
num_blocks (int, optional): Number of DyHead Blocks. Default: 6.
zero_init_offset (bool, optional): Whether to use zero init for
`spatial_conv_offset`. Default: True.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
"""
def __init__(self,
in_channels,
out_channels,
num_blocks=6,
zero_init_offset=True,
init_cfg=None):
assert init_cfg is None, 'To prevent abnormal initialization ' \
'behavior, init_cfg is not allowed to be set'
super().__init__(init_cfg=init_cfg)
self.in_channels = in_channels
self.out_channels = out_channels
self.num_blocks = num_blocks
self.zero_init_offset = zero_init_offset
dyhead_blocks = []
for i in range(num_blocks):
in_channels = self.in_channels if i == 0 else self.out_channels
dyhead_blocks.append(
DyHeadBlock(
in_channels,
self.out_channels,
zero_init_offset=zero_init_offset))
self.dyhead_blocks = nn.Sequential(*dyhead_blocks)
def forward(self, inputs):
"""Forward function."""
assert isinstance(inputs, (tuple, list))
outs = self.dyhead_blocks(inputs)
return tuple(outs)