RockeyCoss
add code files”
51f6859
raw
history blame
5.65 kB
# Copyright (c) OpenMMLab. All rights reserved.
import math
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule
from mmcv.runner import BaseModule
from ..builder import NECKS
from ..utils import CSPLayer
@NECKS.register_module()
class YOLOXPAFPN(BaseModule):
"""Path Aggregation Network used in YOLOX.
Args:
in_channels (List[int]): Number of input channels per scale.
out_channels (int): Number of output channels (used at each scale)
num_csp_blocks (int): Number of bottlenecks in CSPLayer. Default: 3
use_depthwise (bool): Whether to depthwise separable convolution in
blocks. Default: False
upsample_cfg (dict): Config dict for interpolate layer.
Default: `dict(scale_factor=2, mode='nearest')`
conv_cfg (dict, optional): Config dict for convolution layer.
Default: None, which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN')
act_cfg (dict): Config dict for activation layer.
Default: dict(type='Swish')
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
"""
def __init__(self,
in_channels,
out_channels,
num_csp_blocks=3,
use_depthwise=False,
upsample_cfg=dict(scale_factor=2, mode='nearest'),
conv_cfg=None,
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
act_cfg=dict(type='Swish'),
init_cfg=dict(
type='Kaiming',
layer='Conv2d',
a=math.sqrt(5),
distribution='uniform',
mode='fan_in',
nonlinearity='leaky_relu')):
super(YOLOXPAFPN, self).__init__(init_cfg)
self.in_channels = in_channels
self.out_channels = out_channels
conv = DepthwiseSeparableConvModule if use_depthwise else ConvModule
# build top-down blocks
self.upsample = nn.Upsample(**upsample_cfg)
self.reduce_layers = nn.ModuleList()
self.top_down_blocks = nn.ModuleList()
for idx in range(len(in_channels) - 1, 0, -1):
self.reduce_layers.append(
ConvModule(
in_channels[idx],
in_channels[idx - 1],
1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
self.top_down_blocks.append(
CSPLayer(
in_channels[idx - 1] * 2,
in_channels[idx - 1],
num_blocks=num_csp_blocks,
add_identity=False,
use_depthwise=use_depthwise,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
# build bottom-up blocks
self.downsamples = nn.ModuleList()
self.bottom_up_blocks = nn.ModuleList()
for idx in range(len(in_channels) - 1):
self.downsamples.append(
conv(
in_channels[idx],
in_channels[idx],
3,
stride=2,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
self.bottom_up_blocks.append(
CSPLayer(
in_channels[idx] * 2,
in_channels[idx + 1],
num_blocks=num_csp_blocks,
add_identity=False,
use_depthwise=use_depthwise,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
self.out_convs = nn.ModuleList()
for i in range(len(in_channels)):
self.out_convs.append(
ConvModule(
in_channels[i],
out_channels,
1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
def forward(self, inputs):
"""
Args:
inputs (tuple[Tensor]): input features.
Returns:
tuple[Tensor]: YOLOXPAFPN features.
"""
assert len(inputs) == len(self.in_channels)
# top-down path
inner_outs = [inputs[-1]]
for idx in range(len(self.in_channels) - 1, 0, -1):
feat_heigh = inner_outs[0]
feat_low = inputs[idx - 1]
feat_heigh = self.reduce_layers[len(self.in_channels) - 1 - idx](
feat_heigh)
inner_outs[0] = feat_heigh
upsample_feat = self.upsample(feat_heigh)
inner_out = self.top_down_blocks[len(self.in_channels) - 1 - idx](
torch.cat([upsample_feat, feat_low], 1))
inner_outs.insert(0, inner_out)
# bottom-up path
outs = [inner_outs[0]]
for idx in range(len(self.in_channels) - 1):
feat_low = outs[-1]
feat_height = inner_outs[idx + 1]
downsample_feat = self.downsamples[idx](feat_low)
out = self.bottom_up_blocks[idx](
torch.cat([downsample_feat, feat_height], 1))
outs.append(out)
# out convs
for idx, conv in enumerate(self.out_convs):
outs[idx] = conv(outs[idx])
return tuple(outs)