RockeyCoss
add code files”
51f6859
raw
history blame
6.96 kB
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
from mmdet.core import bbox2result, bbox2roi
from ..builder import HEADS, build_head, build_roi_extractor
from .standard_roi_head import StandardRoIHead
@HEADS.register_module()
class GridRoIHead(StandardRoIHead):
"""Grid roi head for Grid R-CNN.
https://arxiv.org/abs/1811.12030
"""
def __init__(self, grid_roi_extractor, grid_head, **kwargs):
assert grid_head is not None
super(GridRoIHead, self).__init__(**kwargs)
if grid_roi_extractor is not None:
self.grid_roi_extractor = build_roi_extractor(grid_roi_extractor)
self.share_roi_extractor = False
else:
self.share_roi_extractor = True
self.grid_roi_extractor = self.bbox_roi_extractor
self.grid_head = build_head(grid_head)
def _random_jitter(self, sampling_results, img_metas, amplitude=0.15):
"""Ramdom jitter positive proposals for training."""
for sampling_result, img_meta in zip(sampling_results, img_metas):
bboxes = sampling_result.pos_bboxes
random_offsets = bboxes.new_empty(bboxes.shape[0], 4).uniform_(
-amplitude, amplitude)
# before jittering
cxcy = (bboxes[:, 2:4] + bboxes[:, :2]) / 2
wh = (bboxes[:, 2:4] - bboxes[:, :2]).abs()
# after jittering
new_cxcy = cxcy + wh * random_offsets[:, :2]
new_wh = wh * (1 + random_offsets[:, 2:])
# xywh to xyxy
new_x1y1 = (new_cxcy - new_wh / 2)
new_x2y2 = (new_cxcy + new_wh / 2)
new_bboxes = torch.cat([new_x1y1, new_x2y2], dim=1)
# clip bboxes
max_shape = img_meta['img_shape']
if max_shape is not None:
new_bboxes[:, 0::2].clamp_(min=0, max=max_shape[1] - 1)
new_bboxes[:, 1::2].clamp_(min=0, max=max_shape[0] - 1)
sampling_result.pos_bboxes = new_bboxes
return sampling_results
def forward_dummy(self, x, proposals):
"""Dummy forward function."""
# bbox head
outs = ()
rois = bbox2roi([proposals])
if self.with_bbox:
bbox_results = self._bbox_forward(x, rois)
outs = outs + (bbox_results['cls_score'],
bbox_results['bbox_pred'])
# grid head
grid_rois = rois[:100]
grid_feats = self.grid_roi_extractor(
x[:self.grid_roi_extractor.num_inputs], grid_rois)
if self.with_shared_head:
grid_feats = self.shared_head(grid_feats)
grid_pred = self.grid_head(grid_feats)
outs = outs + (grid_pred, )
# mask head
if self.with_mask:
mask_rois = rois[:100]
mask_results = self._mask_forward(x, mask_rois)
outs = outs + (mask_results['mask_pred'], )
return outs
def _bbox_forward_train(self, x, sampling_results, gt_bboxes, gt_labels,
img_metas):
"""Run forward function and calculate loss for box head in training."""
bbox_results = super(GridRoIHead,
self)._bbox_forward_train(x, sampling_results,
gt_bboxes, gt_labels,
img_metas)
# Grid head forward and loss
sampling_results = self._random_jitter(sampling_results, img_metas)
pos_rois = bbox2roi([res.pos_bboxes for res in sampling_results])
# GN in head does not support zero shape input
if pos_rois.shape[0] == 0:
return bbox_results
grid_feats = self.grid_roi_extractor(
x[:self.grid_roi_extractor.num_inputs], pos_rois)
if self.with_shared_head:
grid_feats = self.shared_head(grid_feats)
# Accelerate training
max_sample_num_grid = self.train_cfg.get('max_num_grid', 192)
sample_idx = torch.randperm(
grid_feats.shape[0])[:min(grid_feats.shape[0], max_sample_num_grid
)]
grid_feats = grid_feats[sample_idx]
grid_pred = self.grid_head(grid_feats)
grid_targets = self.grid_head.get_targets(sampling_results,
self.train_cfg)
grid_targets = grid_targets[sample_idx]
loss_grid = self.grid_head.loss(grid_pred, grid_targets)
bbox_results['loss_bbox'].update(loss_grid)
return bbox_results
def simple_test(self,
x,
proposal_list,
img_metas,
proposals=None,
rescale=False):
"""Test without augmentation."""
assert self.with_bbox, 'Bbox head must be implemented.'
det_bboxes, det_labels = self.simple_test_bboxes(
x, img_metas, proposal_list, self.test_cfg, rescale=False)
# pack rois into bboxes
grid_rois = bbox2roi([det_bbox[:, :4] for det_bbox in det_bboxes])
if grid_rois.shape[0] != 0:
grid_feats = self.grid_roi_extractor(
x[:len(self.grid_roi_extractor.featmap_strides)], grid_rois)
self.grid_head.test_mode = True
grid_pred = self.grid_head(grid_feats)
# split batch grid head prediction back to each image
num_roi_per_img = tuple(len(det_bbox) for det_bbox in det_bboxes)
grid_pred = {
k: v.split(num_roi_per_img, 0)
for k, v in grid_pred.items()
}
# apply bbox post-processing to each image individually
bbox_results = []
num_imgs = len(det_bboxes)
for i in range(num_imgs):
if det_bboxes[i].shape[0] == 0:
bbox_results.append([
np.zeros((0, 5), dtype=np.float32)
for _ in range(self.bbox_head.num_classes)
])
else:
det_bbox = self.grid_head.get_bboxes(
det_bboxes[i], grid_pred['fused'][i], [img_metas[i]])
if rescale:
det_bbox[:, :4] /= img_metas[i]['scale_factor']
bbox_results.append(
bbox2result(det_bbox, det_labels[i],
self.bbox_head.num_classes))
else:
bbox_results = [[
np.zeros((0, 5), dtype=np.float32)
for _ in range(self.bbox_head.num_classes)
] for _ in range(len(det_bboxes))]
if not self.with_mask:
return bbox_results
else:
segm_results = self.simple_test_mask(
x, img_metas, det_bboxes, det_labels, rescale=rescale)
return list(zip(bbox_results, segm_results))