RockeyCoss
add code files”
51f6859
raw
history blame
17.4 kB
# Copyright (c) OpenMMLab. All rights reserved.
from warnings import warn
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, build_conv_layer, build_upsample_layer
from mmcv.ops.carafe import CARAFEPack
from mmcv.runner import BaseModule, ModuleList, auto_fp16, force_fp32
from torch.nn.modules.utils import _pair
from mmdet.core import mask_target
from mmdet.models.builder import HEADS, build_loss
BYTES_PER_FLOAT = 4
# TODO: This memory limit may be too much or too little. It would be better to
# determine it based on available resources.
GPU_MEM_LIMIT = 1024**3 # 1 GB memory limit
@HEADS.register_module()
class FCNMaskHead(BaseModule):
def __init__(self,
num_convs=4,
roi_feat_size=14,
in_channels=256,
conv_kernel_size=3,
conv_out_channels=256,
num_classes=80,
class_agnostic=False,
upsample_cfg=dict(type='deconv', scale_factor=2),
conv_cfg=None,
norm_cfg=None,
predictor_cfg=dict(type='Conv'),
loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0),
init_cfg=None):
assert init_cfg is None, 'To prevent abnormal initialization ' \
'behavior, init_cfg is not allowed to be set'
super(FCNMaskHead, self).__init__(init_cfg)
self.upsample_cfg = upsample_cfg.copy()
if self.upsample_cfg['type'] not in [
None, 'deconv', 'nearest', 'bilinear', 'carafe'
]:
raise ValueError(
f'Invalid upsample method {self.upsample_cfg["type"]}, '
'accepted methods are "deconv", "nearest", "bilinear", '
'"carafe"')
self.num_convs = num_convs
# WARN: roi_feat_size is reserved and not used
self.roi_feat_size = _pair(roi_feat_size)
self.in_channels = in_channels
self.conv_kernel_size = conv_kernel_size
self.conv_out_channels = conv_out_channels
self.upsample_method = self.upsample_cfg.get('type')
self.scale_factor = self.upsample_cfg.pop('scale_factor', None)
self.num_classes = num_classes
self.class_agnostic = class_agnostic
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.predictor_cfg = predictor_cfg
self.fp16_enabled = False
self.loss_mask = build_loss(loss_mask)
self.convs = ModuleList()
for i in range(self.num_convs):
in_channels = (
self.in_channels if i == 0 else self.conv_out_channels)
padding = (self.conv_kernel_size - 1) // 2
self.convs.append(
ConvModule(
in_channels,
self.conv_out_channels,
self.conv_kernel_size,
padding=padding,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg))
upsample_in_channels = (
self.conv_out_channels if self.num_convs > 0 else in_channels)
upsample_cfg_ = self.upsample_cfg.copy()
if self.upsample_method is None:
self.upsample = None
elif self.upsample_method == 'deconv':
upsample_cfg_.update(
in_channels=upsample_in_channels,
out_channels=self.conv_out_channels,
kernel_size=self.scale_factor,
stride=self.scale_factor)
self.upsample = build_upsample_layer(upsample_cfg_)
elif self.upsample_method == 'carafe':
upsample_cfg_.update(
channels=upsample_in_channels, scale_factor=self.scale_factor)
self.upsample = build_upsample_layer(upsample_cfg_)
else:
# suppress warnings
align_corners = (None
if self.upsample_method == 'nearest' else False)
upsample_cfg_.update(
scale_factor=self.scale_factor,
mode=self.upsample_method,
align_corners=align_corners)
self.upsample = build_upsample_layer(upsample_cfg_)
out_channels = 1 if self.class_agnostic else self.num_classes
logits_in_channel = (
self.conv_out_channels
if self.upsample_method == 'deconv' else upsample_in_channels)
self.conv_logits = build_conv_layer(self.predictor_cfg,
logits_in_channel, out_channels, 1)
self.relu = nn.ReLU(inplace=True)
self.debug_imgs = None
def init_weights(self):
super(FCNMaskHead, self).init_weights()
for m in [self.upsample, self.conv_logits]:
if m is None:
continue
elif isinstance(m, CARAFEPack):
m.init_weights()
elif hasattr(m, 'weight') and hasattr(m, 'bias'):
nn.init.kaiming_normal_(
m.weight, mode='fan_out', nonlinearity='relu')
nn.init.constant_(m.bias, 0)
@auto_fp16()
def forward(self, x):
for conv in self.convs:
x = conv(x)
if self.upsample is not None:
x = self.upsample(x)
if self.upsample_method == 'deconv':
x = self.relu(x)
mask_pred = self.conv_logits(x)
return mask_pred
def get_targets(self, sampling_results, gt_masks, rcnn_train_cfg):
pos_proposals = [res.pos_bboxes for res in sampling_results]
pos_assigned_gt_inds = [
res.pos_assigned_gt_inds for res in sampling_results
]
mask_targets = mask_target(pos_proposals, pos_assigned_gt_inds,
gt_masks, rcnn_train_cfg)
return mask_targets
@force_fp32(apply_to=('mask_pred', ))
def loss(self, mask_pred, mask_targets, labels):
"""
Example:
>>> from mmdet.models.roi_heads.mask_heads.fcn_mask_head import * # NOQA
>>> N = 7 # N = number of extracted ROIs
>>> C, H, W = 11, 32, 32
>>> # Create example instance of FCN Mask Head.
>>> # There are lots of variations depending on the configuration
>>> self = FCNMaskHead(num_classes=C, num_convs=1)
>>> inputs = torch.rand(N, self.in_channels, H, W)
>>> mask_pred = self.forward(inputs)
>>> sf = self.scale_factor
>>> labels = torch.randint(0, C, size=(N,))
>>> # With the default properties the mask targets should indicate
>>> # a (potentially soft) single-class label
>>> mask_targets = torch.rand(N, H * sf, W * sf)
>>> loss = self.loss(mask_pred, mask_targets, labels)
>>> print('loss = {!r}'.format(loss))
"""
loss = dict()
if mask_pred.size(0) == 0:
loss_mask = mask_pred.sum()
else:
if self.class_agnostic:
loss_mask = self.loss_mask(mask_pred, mask_targets,
torch.zeros_like(labels))
else:
loss_mask = self.loss_mask(mask_pred, mask_targets, labels)
loss['loss_mask'] = loss_mask
return loss
def get_seg_masks(self, mask_pred, det_bboxes, det_labels, rcnn_test_cfg,
ori_shape, scale_factor, rescale):
"""Get segmentation masks from mask_pred and bboxes.
Args:
mask_pred (Tensor or ndarray): shape (n, #class, h, w).
For single-scale testing, mask_pred is the direct output of
model, whose type is Tensor, while for multi-scale testing,
it will be converted to numpy array outside of this method.
det_bboxes (Tensor): shape (n, 4/5)
det_labels (Tensor): shape (n, )
rcnn_test_cfg (dict): rcnn testing config
ori_shape (Tuple): original image height and width, shape (2,)
scale_factor(ndarray | Tensor): If ``rescale is True``, box
coordinates are divided by this scale factor to fit
``ori_shape``.
rescale (bool): If True, the resulting masks will be rescaled to
``ori_shape``.
Returns:
list[list]: encoded masks. The c-th item in the outer list
corresponds to the c-th class. Given the c-th outer list, the
i-th item in that inner list is the mask for the i-th box with
class label c.
Example:
>>> import mmcv
>>> from mmdet.models.roi_heads.mask_heads.fcn_mask_head import * # NOQA
>>> N = 7 # N = number of extracted ROIs
>>> C, H, W = 11, 32, 32
>>> # Create example instance of FCN Mask Head.
>>> self = FCNMaskHead(num_classes=C, num_convs=0)
>>> inputs = torch.rand(N, self.in_channels, H, W)
>>> mask_pred = self.forward(inputs)
>>> # Each input is associated with some bounding box
>>> det_bboxes = torch.Tensor([[1, 1, 42, 42 ]] * N)
>>> det_labels = torch.randint(0, C, size=(N,))
>>> rcnn_test_cfg = mmcv.Config({'mask_thr_binary': 0, })
>>> ori_shape = (H * 4, W * 4)
>>> scale_factor = torch.FloatTensor((1, 1))
>>> rescale = False
>>> # Encoded masks are a list for each category.
>>> encoded_masks = self.get_seg_masks(
>>> mask_pred, det_bboxes, det_labels, rcnn_test_cfg, ori_shape,
>>> scale_factor, rescale
>>> )
>>> assert len(encoded_masks) == C
>>> assert sum(list(map(len, encoded_masks))) == N
"""
if isinstance(mask_pred, torch.Tensor):
mask_pred = mask_pred.sigmoid()
else:
# In AugTest, has been activated before
mask_pred = det_bboxes.new_tensor(mask_pred)
device = mask_pred.device
cls_segms = [[] for _ in range(self.num_classes)
] # BG is not included in num_classes
bboxes = det_bboxes[:, :4]
labels = det_labels
# In most cases, scale_factor should have been
# converted to Tensor when rescale the bbox
if not isinstance(scale_factor, torch.Tensor):
if isinstance(scale_factor, float):
scale_factor = np.array([scale_factor] * 4)
warn('Scale_factor should be a Tensor or ndarray '
'with shape (4,), float would be deprecated. ')
assert isinstance(scale_factor, np.ndarray)
scale_factor = torch.Tensor(scale_factor)
if rescale:
img_h, img_w = ori_shape[:2]
bboxes = bboxes / scale_factor.to(bboxes)
else:
w_scale, h_scale = scale_factor[0], scale_factor[1]
img_h = np.round(ori_shape[0] * h_scale.item()).astype(np.int32)
img_w = np.round(ori_shape[1] * w_scale.item()).astype(np.int32)
N = len(mask_pred)
# The actual implementation split the input into chunks,
# and paste them chunk by chunk.
if device.type == 'cpu':
# CPU is most efficient when they are pasted one by one with
# skip_empty=True, so that it performs minimal number of
# operations.
num_chunks = N
else:
# GPU benefits from parallelism for larger chunks,
# but may have memory issue
# the types of img_w and img_h are np.int32,
# when the image resolution is large,
# the calculation of num_chunks will overflow.
# so we need to change the types of img_w and img_h to int.
# See https://github.com/open-mmlab/mmdetection/pull/5191
num_chunks = int(
np.ceil(N * int(img_h) * int(img_w) * BYTES_PER_FLOAT /
GPU_MEM_LIMIT))
assert (num_chunks <=
N), 'Default GPU_MEM_LIMIT is too small; try increasing it'
chunks = torch.chunk(torch.arange(N, device=device), num_chunks)
threshold = rcnn_test_cfg.mask_thr_binary
im_mask = torch.zeros(
N,
img_h,
img_w,
device=device,
dtype=torch.bool if threshold >= 0 else torch.uint8)
if not self.class_agnostic:
mask_pred = mask_pred[range(N), labels][:, None]
for inds in chunks:
masks_chunk, spatial_inds = _do_paste_mask(
mask_pred[inds],
bboxes[inds],
img_h,
img_w,
skip_empty=device.type == 'cpu')
if threshold >= 0:
masks_chunk = (masks_chunk >= threshold).to(dtype=torch.bool)
else:
# for visualization and debugging
masks_chunk = (masks_chunk * 255).to(dtype=torch.uint8)
im_mask[(inds, ) + spatial_inds] = masks_chunk
for i in range(N):
cls_segms[labels[i]].append(im_mask[i].detach().cpu().numpy())
return cls_segms
def onnx_export(self, mask_pred, det_bboxes, det_labels, rcnn_test_cfg,
ori_shape, **kwargs):
"""Get segmentation masks from mask_pred and bboxes.
Args:
mask_pred (Tensor): shape (n, #class, h, w).
det_bboxes (Tensor): shape (n, 4/5)
det_labels (Tensor): shape (n, )
rcnn_test_cfg (dict): rcnn testing config
ori_shape (Tuple): original image height and width, shape (2,)
Returns:
Tensor: a mask of shape (N, img_h, img_w).
"""
mask_pred = mask_pred.sigmoid()
bboxes = det_bboxes[:, :4]
labels = det_labels
# No need to consider rescale and scale_factor while exporting to ONNX
img_h, img_w = ori_shape[:2]
threshold = rcnn_test_cfg.mask_thr_binary
if not self.class_agnostic:
box_inds = torch.arange(mask_pred.shape[0])
mask_pred = mask_pred[box_inds, labels][:, None]
masks, _ = _do_paste_mask(
mask_pred, bboxes, img_h, img_w, skip_empty=False)
if threshold >= 0:
# should convert to float to avoid problems in TRT
masks = (masks >= threshold).to(dtype=torch.float)
return masks
def _do_paste_mask(masks, boxes, img_h, img_w, skip_empty=True):
"""Paste instance masks according to boxes.
This implementation is modified from
https://github.com/facebookresearch/detectron2/
Args:
masks (Tensor): N, 1, H, W
boxes (Tensor): N, 4
img_h (int): Height of the image to be pasted.
img_w (int): Width of the image to be pasted.
skip_empty (bool): Only paste masks within the region that
tightly bound all boxes, and returns the results this region only.
An important optimization for CPU.
Returns:
tuple: (Tensor, tuple). The first item is mask tensor, the second one
is the slice object.
If skip_empty == False, the whole image will be pasted. It will
return a mask of shape (N, img_h, img_w) and an empty tuple.
If skip_empty == True, only area around the mask will be pasted.
A mask of shape (N, h', w') and its start and end coordinates
in the original image will be returned.
"""
# On GPU, paste all masks together (up to chunk size)
# by using the entire image to sample the masks
# Compared to pasting them one by one,
# this has more operations but is faster on COCO-scale dataset.
device = masks.device
if skip_empty:
x0_int, y0_int = torch.clamp(
boxes.min(dim=0).values.floor()[:2] - 1,
min=0).to(dtype=torch.int32)
x1_int = torch.clamp(
boxes[:, 2].max().ceil() + 1, max=img_w).to(dtype=torch.int32)
y1_int = torch.clamp(
boxes[:, 3].max().ceil() + 1, max=img_h).to(dtype=torch.int32)
else:
x0_int, y0_int = 0, 0
x1_int, y1_int = img_w, img_h
x0, y0, x1, y1 = torch.split(boxes, 1, dim=1) # each is Nx1
N = masks.shape[0]
img_y = torch.arange(y0_int, y1_int, device=device).to(torch.float32) + 0.5
img_x = torch.arange(x0_int, x1_int, device=device).to(torch.float32) + 0.5
img_y = (img_y - y0) / (y1 - y0) * 2 - 1
img_x = (img_x - x0) / (x1 - x0) * 2 - 1
# img_x, img_y have shapes (N, w), (N, h)
# IsInf op is not supported with ONNX<=1.7.0
if not torch.onnx.is_in_onnx_export():
if torch.isinf(img_x).any():
inds = torch.where(torch.isinf(img_x))
img_x[inds] = 0
if torch.isinf(img_y).any():
inds = torch.where(torch.isinf(img_y))
img_y[inds] = 0
gx = img_x[:, None, :].expand(N, img_y.size(1), img_x.size(1))
gy = img_y[:, :, None].expand(N, img_y.size(1), img_x.size(1))
grid = torch.stack([gx, gy], dim=3)
img_masks = F.grid_sample(
masks.to(dtype=torch.float32), grid, align_corners=False)
if skip_empty:
return img_masks[:, 0], (slice(y0_int, y1_int), slice(x0_int, x1_int))
else:
return img_masks[:, 0], ()