Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch.nn as nn | |
from mmcv.runner import BaseModule, auto_fp16 | |
from mmdet.models.builder import HEADS | |
class FeatureRelayHead(BaseModule): | |
"""Feature Relay Head used in `SCNet <https://arxiv.org/abs/2012.10150>`_. | |
Args: | |
in_channels (int, optional): number of input channels. Default: 256. | |
conv_out_channels (int, optional): number of output channels before | |
classification layer. Default: 256. | |
roi_feat_size (int, optional): roi feat size at box head. Default: 7. | |
scale_factor (int, optional): scale factor to match roi feat size | |
at mask head. Default: 2. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
""" | |
def __init__(self, | |
in_channels=1024, | |
out_conv_channels=256, | |
roi_feat_size=7, | |
scale_factor=2, | |
init_cfg=dict(type='Kaiming', layer='Linear')): | |
super(FeatureRelayHead, self).__init__(init_cfg) | |
assert isinstance(roi_feat_size, int) | |
self.in_channels = in_channels | |
self.out_conv_channels = out_conv_channels | |
self.roi_feat_size = roi_feat_size | |
self.out_channels = (roi_feat_size**2) * out_conv_channels | |
self.scale_factor = scale_factor | |
self.fp16_enabled = False | |
self.fc = nn.Linear(self.in_channels, self.out_channels) | |
self.upsample = nn.Upsample( | |
scale_factor=scale_factor, mode='bilinear', align_corners=True) | |
def forward(self, x): | |
"""Forward function.""" | |
N, in_C = x.shape | |
if N > 0: | |
out_C = self.out_conv_channels | |
out_HW = self.roi_feat_size | |
x = self.fc(x) | |
x = x.reshape(N, out_C, out_HW, out_HW) | |
x = self.upsample(x) | |
return x | |
return None | |