RockeyCoss
add code files”
51f6859
raw
history blame
5.32 kB
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmcv.ops import batched_nms
from mmdet.core import (bbox2result, bbox2roi, bbox_mapping, merge_aug_bboxes,
multiclass_nms)
from mmdet.models.roi_heads.standard_roi_head import StandardRoIHead
from ..builder import HEADS
@HEADS.register_module()
class TridentRoIHead(StandardRoIHead):
"""Trident roi head.
Args:
num_branch (int): Number of branches in TridentNet.
test_branch_idx (int): In inference, all 3 branches will be used
if `test_branch_idx==-1`, otherwise only branch with index
`test_branch_idx` will be used.
"""
def __init__(self, num_branch, test_branch_idx, **kwargs):
self.num_branch = num_branch
self.test_branch_idx = test_branch_idx
super(TridentRoIHead, self).__init__(**kwargs)
def merge_trident_bboxes(self, trident_det_bboxes, trident_det_labels):
"""Merge bbox predictions of each branch."""
if trident_det_bboxes.numel() == 0:
det_bboxes = trident_det_bboxes.new_zeros((0, 5))
det_labels = trident_det_bboxes.new_zeros((0, ), dtype=torch.long)
else:
nms_bboxes = trident_det_bboxes[:, :4]
nms_scores = trident_det_bboxes[:, 4].contiguous()
nms_inds = trident_det_labels
nms_cfg = self.test_cfg['nms']
det_bboxes, keep = batched_nms(nms_bboxes, nms_scores, nms_inds,
nms_cfg)
det_labels = trident_det_labels[keep]
if self.test_cfg['max_per_img'] > 0:
det_labels = det_labels[:self.test_cfg['max_per_img']]
det_bboxes = det_bboxes[:self.test_cfg['max_per_img']]
return det_bboxes, det_labels
def simple_test(self,
x,
proposal_list,
img_metas,
proposals=None,
rescale=False):
"""Test without augmentation as follows:
1. Compute prediction bbox and label per branch.
2. Merge predictions of each branch according to scores of
bboxes, i.e., bboxes with higher score are kept to give
top-k prediction.
"""
assert self.with_bbox, 'Bbox head must be implemented.'
det_bboxes_list, det_labels_list = self.simple_test_bboxes(
x, img_metas, proposal_list, self.test_cfg, rescale=rescale)
num_branch = self.num_branch if self.test_branch_idx == -1 else 1
for _ in range(len(det_bboxes_list)):
if det_bboxes_list[_].shape[0] == 0:
det_bboxes_list[_] = det_bboxes_list[_].new_empty((0, 5))
det_bboxes, det_labels = [], []
for i in range(len(img_metas) // num_branch):
det_result = self.merge_trident_bboxes(
torch.cat(det_bboxes_list[i * num_branch:(i + 1) *
num_branch]),
torch.cat(det_labels_list[i * num_branch:(i + 1) *
num_branch]))
det_bboxes.append(det_result[0])
det_labels.append(det_result[1])
bbox_results = [
bbox2result(det_bboxes[i], det_labels[i],
self.bbox_head.num_classes)
for i in range(len(det_bboxes))
]
return bbox_results
def aug_test_bboxes(self, feats, img_metas, proposal_list, rcnn_test_cfg):
"""Test det bboxes with test time augmentation."""
aug_bboxes = []
aug_scores = []
for x, img_meta in zip(feats, img_metas):
# only one image in the batch
img_shape = img_meta[0]['img_shape']
scale_factor = img_meta[0]['scale_factor']
flip = img_meta[0]['flip']
flip_direction = img_meta[0]['flip_direction']
trident_bboxes, trident_scores = [], []
for branch_idx in range(len(proposal_list)):
proposals = bbox_mapping(proposal_list[0][:, :4], img_shape,
scale_factor, flip, flip_direction)
rois = bbox2roi([proposals])
bbox_results = self._bbox_forward(x, rois)
bboxes, scores = self.bbox_head.get_bboxes(
rois,
bbox_results['cls_score'],
bbox_results['bbox_pred'],
img_shape,
scale_factor,
rescale=False,
cfg=None)
trident_bboxes.append(bboxes)
trident_scores.append(scores)
aug_bboxes.append(torch.cat(trident_bboxes, 0))
aug_scores.append(torch.cat(trident_scores, 0))
# after merging, bboxes will be rescaled to the original image size
merged_bboxes, merged_scores = merge_aug_bboxes(
aug_bboxes, aug_scores, img_metas, rcnn_test_cfg)
det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores,
rcnn_test_cfg.score_thr,
rcnn_test_cfg.nms,
rcnn_test_cfg.max_per_img)
return det_bboxes, det_labels