RockeyCoss
add code files”
51f6859
raw
history blame
1.86 kB
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn.bricks.wrappers import NewEmptyTensorOp, obsolete_torch_version
if torch.__version__ == 'parrots':
TORCH_VERSION = torch.__version__
else:
# torch.__version__ could be 1.3.1+cu92, we only need the first two
# for comparison
TORCH_VERSION = tuple(int(x) for x in torch.__version__.split('.')[:2])
def adaptive_avg_pool2d(input, output_size):
"""Handle empty batch dimension to adaptive_avg_pool2d.
Args:
input (tensor): 4D tensor.
output_size (int, tuple[int,int]): the target output size.
"""
if input.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 9)):
if isinstance(output_size, int):
output_size = [output_size, output_size]
output_size = [*input.shape[:2], *output_size]
empty = NewEmptyTensorOp.apply(input, output_size)
return empty
else:
return F.adaptive_avg_pool2d(input, output_size)
class AdaptiveAvgPool2d(nn.AdaptiveAvgPool2d):
"""Handle empty batch dimension to AdaptiveAvgPool2d."""
def forward(self, x):
# PyTorch 1.9 does not support empty tensor inference yet
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 9)):
output_size = self.output_size
if isinstance(output_size, int):
output_size = [output_size, output_size]
else:
output_size = [
v if v is not None else d
for v, d in zip(output_size,
x.size()[-2:])
]
output_size = [*x.shape[:2], *output_size]
empty = NewEmptyTensorOp.apply(x, output_size)
return empty
return super().forward(x)