RockeyCoss
add code files”
51f6859
raw
history blame
4.64 kB
# Copyright (c) OpenMMLab. All rights reserved.
import mmcv
import torch
import torch.nn as nn
from ..builder import LOSSES
from .utils import weighted_loss
@mmcv.jit(derivate=True, coderize=True)
@weighted_loss
def smooth_l1_loss(pred, target, beta=1.0):
"""Smooth L1 loss.
Args:
pred (torch.Tensor): The prediction.
target (torch.Tensor): The learning target of the prediction.
beta (float, optional): The threshold in the piecewise function.
Defaults to 1.0.
Returns:
torch.Tensor: Calculated loss
"""
assert beta > 0
if target.numel() == 0:
return pred.sum() * 0
assert pred.size() == target.size()
diff = torch.abs(pred - target)
loss = torch.where(diff < beta, 0.5 * diff * diff / beta,
diff - 0.5 * beta)
return loss
@mmcv.jit(derivate=True, coderize=True)
@weighted_loss
def l1_loss(pred, target):
"""L1 loss.
Args:
pred (torch.Tensor): The prediction.
target (torch.Tensor): The learning target of the prediction.
Returns:
torch.Tensor: Calculated loss
"""
if target.numel() == 0:
return pred.sum() * 0
assert pred.size() == target.size()
loss = torch.abs(pred - target)
return loss
@LOSSES.register_module()
class SmoothL1Loss(nn.Module):
"""Smooth L1 loss.
Args:
beta (float, optional): The threshold in the piecewise function.
Defaults to 1.0.
reduction (str, optional): The method to reduce the loss.
Options are "none", "mean" and "sum". Defaults to "mean".
loss_weight (float, optional): The weight of loss.
"""
def __init__(self, beta=1.0, reduction='mean', loss_weight=1.0):
super(SmoothL1Loss, self).__init__()
self.beta = beta
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self,
pred,
target,
weight=None,
avg_factor=None,
reduction_override=None,
**kwargs):
"""Forward function.
Args:
pred (torch.Tensor): The prediction.
target (torch.Tensor): The learning target of the prediction.
weight (torch.Tensor, optional): The weight of loss for each
prediction. Defaults to None.
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
reduction_override (str, optional): The reduction method used to
override the original reduction method of the loss.
Defaults to None.
"""
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (
reduction_override if reduction_override else self.reduction)
loss_bbox = self.loss_weight * smooth_l1_loss(
pred,
target,
weight,
beta=self.beta,
reduction=reduction,
avg_factor=avg_factor,
**kwargs)
return loss_bbox
@LOSSES.register_module()
class L1Loss(nn.Module):
"""L1 loss.
Args:
reduction (str, optional): The method to reduce the loss.
Options are "none", "mean" and "sum".
loss_weight (float, optional): The weight of loss.
"""
def __init__(self, reduction='mean', loss_weight=1.0):
super(L1Loss, self).__init__()
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self,
pred,
target,
weight=None,
avg_factor=None,
reduction_override=None):
"""Forward function.
Args:
pred (torch.Tensor): The prediction.
target (torch.Tensor): The learning target of the prediction.
weight (torch.Tensor, optional): The weight of loss for each
prediction. Defaults to None.
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
reduction_override (str, optional): The reduction method used to
override the original reduction method of the loss.
Defaults to None.
"""
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (
reduction_override if reduction_override else self.reduction)
loss_bbox = self.loss_weight * l1_loss(
pred, target, weight, reduction=reduction, avg_factor=avg_factor)
return loss_bbox