RockeyCoss
add code files”
51f6859
raw
history blame
10.2 kB
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import torch
from ..builder import BBOX_ASSIGNERS
from ..iou_calculators import build_iou_calculator
from .assign_result import AssignResult
from .base_assigner import BaseAssigner
@BBOX_ASSIGNERS.register_module()
class ATSSAssigner(BaseAssigner):
"""Assign a corresponding gt bbox or background to each bbox.
Each proposals will be assigned with `0` or a positive integer
indicating the ground truth index.
- 0: negative sample, no assigned gt
- positive integer: positive sample, index (1-based) of assigned gt
If ``alpha`` is not None, it means that the dynamic cost
ATSSAssigner is adopted, which is currently only used in the DDOD.
Args:
topk (float): number of bbox selected in each level
"""
def __init__(self,
topk,
alpha=None,
iou_calculator=dict(type='BboxOverlaps2D'),
ignore_iof_thr=-1):
self.topk = topk
self.alpha = alpha
self.iou_calculator = build_iou_calculator(iou_calculator)
self.ignore_iof_thr = ignore_iof_thr
"""Assign a corresponding gt bbox or background to each bbox.
Args:
topk (int): number of bbox selected in each level.
alpha (float): param of cost rate for each proposal only in DDOD.
Default None.
iou_calculator (dict): builder of IoU calculator.
Default dict(type='BboxOverlaps2D').
ignore_iof_thr (int): whether ignore max overlaps or not.
Default -1 (1 or -1).
"""
# https://github.com/sfzhang15/ATSS/blob/master/atss_core/modeling/rpn/atss/loss.py
def assign(self,
bboxes,
num_level_bboxes,
gt_bboxes,
gt_bboxes_ignore=None,
gt_labels=None,
cls_scores=None,
bbox_preds=None):
"""Assign gt to bboxes.
The assignment is done in following steps
1. compute iou between all bbox (bbox of all pyramid levels) and gt
2. compute center distance between all bbox and gt
3. on each pyramid level, for each gt, select k bbox whose center
are closest to the gt center, so we total select k*l bbox as
candidates for each gt
4. get corresponding iou for the these candidates, and compute the
mean and std, set mean + std as the iou threshold
5. select these candidates whose iou are greater than or equal to
the threshold as positive
6. limit the positive sample's center in gt
If ``alpha`` is not None, and ``cls_scores`` and `bbox_preds`
are not None, the overlaps calculation in the first step
will also include dynamic cost, which is currently only used in
the DDOD.
Args:
bboxes (Tensor): Bounding boxes to be assigned, shape(n, 4).
num_level_bboxes (List): num of bboxes in each level
gt_bboxes (Tensor): Groundtruth boxes, shape (k, 4).
gt_bboxes_ignore (Tensor, optional): Ground truth bboxes that are
labelled as `ignored`, e.g., crowd boxes in COCO. Default None.
gt_labels (Tensor, optional): Label of gt_bboxes, shape (k, ).
cls_scores (list[Tensor]): Classification scores for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * num_classes. Default None.
bbox_preds (list[Tensor]): Box energies / deltas for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * 4. Default None.
Returns:
:obj:`AssignResult`: The assign result.
"""
INF = 100000000
bboxes = bboxes[:, :4]
num_gt, num_bboxes = gt_bboxes.size(0), bboxes.size(0)
message = 'Invalid alpha parameter because cls_scores or ' \
'bbox_preds are None. If you want to use the ' \
'cost-based ATSSAssigner, please set cls_scores, ' \
'bbox_preds and self.alpha at the same time. '
if self.alpha is None:
# ATSSAssigner
overlaps = self.iou_calculator(bboxes, gt_bboxes)
if cls_scores is not None or bbox_preds is not None:
warnings.warn(message)
else:
# Dynamic cost ATSSAssigner in DDOD
assert cls_scores is not None and bbox_preds is not None, message
# compute cls cost for bbox and GT
cls_cost = torch.sigmoid(cls_scores[:, gt_labels])
# compute iou between all bbox and gt
overlaps = self.iou_calculator(bbox_preds, gt_bboxes)
# make sure that we are in element-wise multiplication
assert cls_cost.shape == overlaps.shape
# overlaps is actually a cost matrix
overlaps = cls_cost**(1 - self.alpha) * overlaps**self.alpha
# assign 0 by default
assigned_gt_inds = overlaps.new_full((num_bboxes, ),
0,
dtype=torch.long)
if num_gt == 0 or num_bboxes == 0:
# No ground truth or boxes, return empty assignment
max_overlaps = overlaps.new_zeros((num_bboxes, ))
if num_gt == 0:
# No truth, assign everything to background
assigned_gt_inds[:] = 0
if gt_labels is None:
assigned_labels = None
else:
assigned_labels = overlaps.new_full((num_bboxes, ),
-1,
dtype=torch.long)
return AssignResult(
num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels)
# compute center distance between all bbox and gt
gt_cx = (gt_bboxes[:, 0] + gt_bboxes[:, 2]) / 2.0
gt_cy = (gt_bboxes[:, 1] + gt_bboxes[:, 3]) / 2.0
gt_points = torch.stack((gt_cx, gt_cy), dim=1)
bboxes_cx = (bboxes[:, 0] + bboxes[:, 2]) / 2.0
bboxes_cy = (bboxes[:, 1] + bboxes[:, 3]) / 2.0
bboxes_points = torch.stack((bboxes_cx, bboxes_cy), dim=1)
distances = (bboxes_points[:, None, :] -
gt_points[None, :, :]).pow(2).sum(-1).sqrt()
if (self.ignore_iof_thr > 0 and gt_bboxes_ignore is not None
and gt_bboxes_ignore.numel() > 0 and bboxes.numel() > 0):
ignore_overlaps = self.iou_calculator(
bboxes, gt_bboxes_ignore, mode='iof')
ignore_max_overlaps, _ = ignore_overlaps.max(dim=1)
ignore_idxs = ignore_max_overlaps > self.ignore_iof_thr
distances[ignore_idxs, :] = INF
assigned_gt_inds[ignore_idxs] = -1
# Selecting candidates based on the center distance
candidate_idxs = []
start_idx = 0
for level, bboxes_per_level in enumerate(num_level_bboxes):
# on each pyramid level, for each gt,
# select k bbox whose center are closest to the gt center
end_idx = start_idx + bboxes_per_level
distances_per_level = distances[start_idx:end_idx, :]
selectable_k = min(self.topk, bboxes_per_level)
_, topk_idxs_per_level = distances_per_level.topk(
selectable_k, dim=0, largest=False)
candidate_idxs.append(topk_idxs_per_level + start_idx)
start_idx = end_idx
candidate_idxs = torch.cat(candidate_idxs, dim=0)
# get corresponding iou for the these candidates, and compute the
# mean and std, set mean + std as the iou threshold
candidate_overlaps = overlaps[candidate_idxs, torch.arange(num_gt)]
overlaps_mean_per_gt = candidate_overlaps.mean(0)
overlaps_std_per_gt = candidate_overlaps.std(0)
overlaps_thr_per_gt = overlaps_mean_per_gt + overlaps_std_per_gt
is_pos = candidate_overlaps >= overlaps_thr_per_gt[None, :]
# limit the positive sample's center in gt
for gt_idx in range(num_gt):
candidate_idxs[:, gt_idx] += gt_idx * num_bboxes
ep_bboxes_cx = bboxes_cx.view(1, -1).expand(
num_gt, num_bboxes).contiguous().view(-1)
ep_bboxes_cy = bboxes_cy.view(1, -1).expand(
num_gt, num_bboxes).contiguous().view(-1)
candidate_idxs = candidate_idxs.view(-1)
# calculate the left, top, right, bottom distance between positive
# bbox center and gt side
l_ = ep_bboxes_cx[candidate_idxs].view(-1, num_gt) - gt_bboxes[:, 0]
t_ = ep_bboxes_cy[candidate_idxs].view(-1, num_gt) - gt_bboxes[:, 1]
r_ = gt_bboxes[:, 2] - ep_bboxes_cx[candidate_idxs].view(-1, num_gt)
b_ = gt_bboxes[:, 3] - ep_bboxes_cy[candidate_idxs].view(-1, num_gt)
is_in_gts = torch.stack([l_, t_, r_, b_], dim=1).min(dim=1)[0] > 0.01
is_pos = is_pos & is_in_gts
# if an anchor box is assigned to multiple gts,
# the one with the highest IoU will be selected.
overlaps_inf = torch.full_like(overlaps,
-INF).t().contiguous().view(-1)
index = candidate_idxs.view(-1)[is_pos.view(-1)]
overlaps_inf[index] = overlaps.t().contiguous().view(-1)[index]
overlaps_inf = overlaps_inf.view(num_gt, -1).t()
max_overlaps, argmax_overlaps = overlaps_inf.max(dim=1)
assigned_gt_inds[
max_overlaps != -INF] = argmax_overlaps[max_overlaps != -INF] + 1
if gt_labels is not None:
assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1)
pos_inds = torch.nonzero(
assigned_gt_inds > 0, as_tuple=False).squeeze()
if pos_inds.numel() > 0:
assigned_labels[pos_inds] = gt_labels[
assigned_gt_inds[pos_inds] - 1]
else:
assigned_labels = None
return AssignResult(
num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels)