RockeyCoss
add code files”
51f6859
raw
history blame
3.92 kB
# Copyright (c) OpenMMLab. All rights reserved.
from abc import ABCMeta, abstractmethod
import torch
from .sampling_result import SamplingResult
class BaseSampler(metaclass=ABCMeta):
"""Base class of samplers."""
def __init__(self,
num,
pos_fraction,
neg_pos_ub=-1,
add_gt_as_proposals=True,
**kwargs):
self.num = num
self.pos_fraction = pos_fraction
self.neg_pos_ub = neg_pos_ub
self.add_gt_as_proposals = add_gt_as_proposals
self.pos_sampler = self
self.neg_sampler = self
@abstractmethod
def _sample_pos(self, assign_result, num_expected, **kwargs):
"""Sample positive samples."""
pass
@abstractmethod
def _sample_neg(self, assign_result, num_expected, **kwargs):
"""Sample negative samples."""
pass
def sample(self,
assign_result,
bboxes,
gt_bboxes,
gt_labels=None,
**kwargs):
"""Sample positive and negative bboxes.
This is a simple implementation of bbox sampling given candidates,
assigning results and ground truth bboxes.
Args:
assign_result (:obj:`AssignResult`): Bbox assigning results.
bboxes (Tensor): Boxes to be sampled from.
gt_bboxes (Tensor): Ground truth bboxes.
gt_labels (Tensor, optional): Class labels of ground truth bboxes.
Returns:
:obj:`SamplingResult`: Sampling result.
Example:
>>> from mmdet.core.bbox import RandomSampler
>>> from mmdet.core.bbox import AssignResult
>>> from mmdet.core.bbox.demodata import ensure_rng, random_boxes
>>> rng = ensure_rng(None)
>>> assign_result = AssignResult.random(rng=rng)
>>> bboxes = random_boxes(assign_result.num_preds, rng=rng)
>>> gt_bboxes = random_boxes(assign_result.num_gts, rng=rng)
>>> gt_labels = None
>>> self = RandomSampler(num=32, pos_fraction=0.5, neg_pos_ub=-1,
>>> add_gt_as_proposals=False)
>>> self = self.sample(assign_result, bboxes, gt_bboxes, gt_labels)
"""
if len(bboxes.shape) < 2:
bboxes = bboxes[None, :]
bboxes = bboxes[:, :4]
gt_flags = bboxes.new_zeros((bboxes.shape[0], ), dtype=torch.uint8)
if self.add_gt_as_proposals and len(gt_bboxes) > 0:
if gt_labels is None:
raise ValueError(
'gt_labels must be given when add_gt_as_proposals is True')
bboxes = torch.cat([gt_bboxes, bboxes], dim=0)
assign_result.add_gt_(gt_labels)
gt_ones = bboxes.new_ones(gt_bboxes.shape[0], dtype=torch.uint8)
gt_flags = torch.cat([gt_ones, gt_flags])
num_expected_pos = int(self.num * self.pos_fraction)
pos_inds = self.pos_sampler._sample_pos(
assign_result, num_expected_pos, bboxes=bboxes, **kwargs)
# We found that sampled indices have duplicated items occasionally.
# (may be a bug of PyTorch)
pos_inds = pos_inds.unique()
num_sampled_pos = pos_inds.numel()
num_expected_neg = self.num - num_sampled_pos
if self.neg_pos_ub >= 0:
_pos = max(1, num_sampled_pos)
neg_upper_bound = int(self.neg_pos_ub * _pos)
if num_expected_neg > neg_upper_bound:
num_expected_neg = neg_upper_bound
neg_inds = self.neg_sampler._sample_neg(
assign_result, num_expected_neg, bboxes=bboxes, **kwargs)
neg_inds = neg_inds.unique()
sampling_result = SamplingResult(pos_inds, neg_inds, bboxes, gt_bboxes,
assign_result, gt_flags)
return sampling_result