RockeyCoss
add code files”
51f6859
raw
history blame
7.6 kB
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmcv.runner import BaseModule
from torch.nn.modules.batchnorm import _BatchNorm
from ..builder import BACKBONES
from ..utils import InvertedResidual, make_divisible
@BACKBONES.register_module()
class MobileNetV2(BaseModule):
"""MobileNetV2 backbone.
Args:
widen_factor (float): Width multiplier, multiply number of
channels in each layer by this amount. Default: 1.0.
out_indices (Sequence[int], optional): Output from which stages.
Default: (1, 2, 4, 7).
frozen_stages (int): Stages to be frozen (all param fixed).
Default: -1, which means not freezing any parameters.
conv_cfg (dict, optional): Config dict for convolution layer.
Default: None, which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU6').
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
pretrained (str, optional): model pretrained path. Default: None
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None
"""
# Parameters to build layers. 4 parameters are needed to construct a
# layer, from left to right: expand_ratio, channel, num_blocks, stride.
arch_settings = [[1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2],
[6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2],
[6, 320, 1, 1]]
def __init__(self,
widen_factor=1.,
out_indices=(1, 2, 4, 7),
frozen_stages=-1,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU6'),
norm_eval=False,
with_cp=False,
pretrained=None,
init_cfg=None):
super(MobileNetV2, self).__init__(init_cfg)
self.pretrained = pretrained
assert not (init_cfg and pretrained), \
'init_cfg and pretrained cannot be specified at the same time'
if isinstance(pretrained, str):
warnings.warn('DeprecationWarning: pretrained is deprecated, '
'please use "init_cfg" instead')
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
elif pretrained is None:
if init_cfg is None:
self.init_cfg = [
dict(type='Kaiming', layer='Conv2d'),
dict(
type='Constant',
val=1,
layer=['_BatchNorm', 'GroupNorm'])
]
else:
raise TypeError('pretrained must be a str or None')
self.widen_factor = widen_factor
self.out_indices = out_indices
if not set(out_indices).issubset(set(range(0, 8))):
raise ValueError('out_indices must be a subset of range'
f'(0, 8). But received {out_indices}')
if frozen_stages not in range(-1, 8):
raise ValueError('frozen_stages must be in range(-1, 8). '
f'But received {frozen_stages}')
self.out_indices = out_indices
self.frozen_stages = frozen_stages
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.norm_eval = norm_eval
self.with_cp = with_cp
self.in_channels = make_divisible(32 * widen_factor, 8)
self.conv1 = ConvModule(
in_channels=3,
out_channels=self.in_channels,
kernel_size=3,
stride=2,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.layers = []
for i, layer_cfg in enumerate(self.arch_settings):
expand_ratio, channel, num_blocks, stride = layer_cfg
out_channels = make_divisible(channel * widen_factor, 8)
inverted_res_layer = self.make_layer(
out_channels=out_channels,
num_blocks=num_blocks,
stride=stride,
expand_ratio=expand_ratio)
layer_name = f'layer{i + 1}'
self.add_module(layer_name, inverted_res_layer)
self.layers.append(layer_name)
if widen_factor > 1.0:
self.out_channel = int(1280 * widen_factor)
else:
self.out_channel = 1280
layer = ConvModule(
in_channels=self.in_channels,
out_channels=self.out_channel,
kernel_size=1,
stride=1,
padding=0,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.add_module('conv2', layer)
self.layers.append('conv2')
def make_layer(self, out_channels, num_blocks, stride, expand_ratio):
"""Stack InvertedResidual blocks to build a layer for MobileNetV2.
Args:
out_channels (int): out_channels of block.
num_blocks (int): number of blocks.
stride (int): stride of the first block. Default: 1
expand_ratio (int): Expand the number of channels of the
hidden layer in InvertedResidual by this ratio. Default: 6.
"""
layers = []
for i in range(num_blocks):
if i >= 1:
stride = 1
layers.append(
InvertedResidual(
self.in_channels,
out_channels,
mid_channels=int(round(self.in_channels * expand_ratio)),
stride=stride,
with_expand_conv=expand_ratio != 1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
with_cp=self.with_cp))
self.in_channels = out_channels
return nn.Sequential(*layers)
def _freeze_stages(self):
if self.frozen_stages >= 0:
for param in self.conv1.parameters():
param.requires_grad = False
for i in range(1, self.frozen_stages + 1):
layer = getattr(self, f'layer{i}')
layer.eval()
for param in layer.parameters():
param.requires_grad = False
def forward(self, x):
"""Forward function."""
x = self.conv1(x)
outs = []
for i, layer_name in enumerate(self.layers):
layer = getattr(self, layer_name)
x = layer(x)
if i in self.out_indices:
outs.append(x)
return tuple(outs)
def train(self, mode=True):
"""Convert the model into training mode while keep normalization layer
frozen."""
super(MobileNetV2, self).train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
# trick: eval have effect on BatchNorm only
if isinstance(m, _BatchNorm):
m.eval()