RockeyCoss
add code files”
51f6859
raw
history blame
4.41 kB
# Copyright (c) OpenMMLab. All rights reserved.
from ..builder import DETECTORS
from .two_stage import TwoStageDetector
@DETECTORS.register_module()
class SparseRCNN(TwoStageDetector):
r"""Implementation of `Sparse R-CNN: End-to-End Object Detection with
Learnable Proposals <https://arxiv.org/abs/2011.12450>`_"""
def __init__(self, *args, **kwargs):
super(SparseRCNN, self).__init__(*args, **kwargs)
assert self.with_rpn, 'Sparse R-CNN and QueryInst ' \
'do not support external proposals'
def forward_train(self,
img,
img_metas,
gt_bboxes,
gt_labels,
gt_bboxes_ignore=None,
gt_masks=None,
proposals=None,
**kwargs):
"""Forward function of SparseR-CNN and QueryInst in train stage.
Args:
img (Tensor): of shape (N, C, H, W) encoding input images.
Typically these should be mean centered and std scaled.
img_metas (list[dict]): list of image info dict where each dict
has: 'img_shape', 'scale_factor', 'flip', and may also contain
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
For details on the values of these keys see
:class:`mmdet.datasets.pipelines.Collect`.
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]): class indices corresponding to each box
gt_bboxes_ignore (None | list[Tensor): specify which bounding
boxes can be ignored when computing the loss.
gt_masks (List[Tensor], optional) : Segmentation masks for
each box. This is required to train QueryInst.
proposals (List[Tensor], optional): override rpn proposals with
custom proposals. Use when `with_rpn` is False.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
assert proposals is None, 'Sparse R-CNN and QueryInst ' \
'do not support external proposals'
x = self.extract_feat(img)
proposal_boxes, proposal_features, imgs_whwh = \
self.rpn_head.forward_train(x, img_metas)
roi_losses = self.roi_head.forward_train(
x,
proposal_boxes,
proposal_features,
img_metas,
gt_bboxes,
gt_labels,
gt_bboxes_ignore=gt_bboxes_ignore,
gt_masks=gt_masks,
imgs_whwh=imgs_whwh)
return roi_losses
def simple_test(self, img, img_metas, rescale=False):
"""Test function without test time augmentation.
Args:
imgs (list[torch.Tensor]): List of multiple images
img_metas (list[dict]): List of image information.
rescale (bool): Whether to rescale the results.
Defaults to False.
Returns:
list[list[np.ndarray]]: BBox results of each image and classes.
The outer list corresponds to each image. The inner list
corresponds to each class.
"""
x = self.extract_feat(img)
proposal_boxes, proposal_features, imgs_whwh = \
self.rpn_head.simple_test_rpn(x, img_metas)
results = self.roi_head.simple_test(
x,
proposal_boxes,
proposal_features,
img_metas,
imgs_whwh=imgs_whwh,
rescale=rescale)
return results
def forward_dummy(self, img):
"""Used for computing network flops.
See `mmdetection/tools/analysis_tools/get_flops.py`
"""
# backbone
x = self.extract_feat(img)
# rpn
num_imgs = len(img)
dummy_img_metas = [
dict(img_shape=(800, 1333, 3)) for _ in range(num_imgs)
]
proposal_boxes, proposal_features, imgs_whwh = \
self.rpn_head.simple_test_rpn(x, dummy_img_metas)
# roi_head
roi_outs = self.roi_head.forward_dummy(x, proposal_boxes,
proposal_features,
dummy_img_metas)
return roi_outs