Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch.nn as nn | |
from mmcv.cnn import (ConvModule, caffe2_xavier_init, constant_init, is_norm, | |
normal_init) | |
from torch.nn import BatchNorm2d | |
from ..builder import NECKS | |
class Bottleneck(nn.Module): | |
"""Bottleneck block for DilatedEncoder used in `YOLOF. | |
<https://arxiv.org/abs/2103.09460>`. | |
The Bottleneck contains three ConvLayers and one residual connection. | |
Args: | |
in_channels (int): The number of input channels. | |
mid_channels (int): The number of middle output channels. | |
dilation (int): Dilation rate. | |
norm_cfg (dict): Dictionary to construct and config norm layer. | |
""" | |
def __init__(self, | |
in_channels, | |
mid_channels, | |
dilation, | |
norm_cfg=dict(type='BN', requires_grad=True)): | |
super(Bottleneck, self).__init__() | |
self.conv1 = ConvModule( | |
in_channels, mid_channels, 1, norm_cfg=norm_cfg) | |
self.conv2 = ConvModule( | |
mid_channels, | |
mid_channels, | |
3, | |
padding=dilation, | |
dilation=dilation, | |
norm_cfg=norm_cfg) | |
self.conv3 = ConvModule( | |
mid_channels, in_channels, 1, norm_cfg=norm_cfg) | |
def forward(self, x): | |
identity = x | |
out = self.conv1(x) | |
out = self.conv2(out) | |
out = self.conv3(out) | |
out = out + identity | |
return out | |
class DilatedEncoder(nn.Module): | |
"""Dilated Encoder for YOLOF <https://arxiv.org/abs/2103.09460>`. | |
This module contains two types of components: | |
- the original FPN lateral convolution layer and fpn convolution layer, | |
which are 1x1 conv + 3x3 conv | |
- the dilated residual block | |
Args: | |
in_channels (int): The number of input channels. | |
out_channels (int): The number of output channels. | |
block_mid_channels (int): The number of middle block output channels | |
num_residual_blocks (int): The number of residual blocks. | |
block_dilations (list): The list of residual blocks dilation. | |
""" | |
def __init__(self, in_channels, out_channels, block_mid_channels, | |
num_residual_blocks, block_dilations): | |
super(DilatedEncoder, self).__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.block_mid_channels = block_mid_channels | |
self.num_residual_blocks = num_residual_blocks | |
self.block_dilations = block_dilations | |
self._init_layers() | |
def _init_layers(self): | |
self.lateral_conv = nn.Conv2d( | |
self.in_channels, self.out_channels, kernel_size=1) | |
self.lateral_norm = BatchNorm2d(self.out_channels) | |
self.fpn_conv = nn.Conv2d( | |
self.out_channels, self.out_channels, kernel_size=3, padding=1) | |
self.fpn_norm = BatchNorm2d(self.out_channels) | |
encoder_blocks = [] | |
for i in range(self.num_residual_blocks): | |
dilation = self.block_dilations[i] | |
encoder_blocks.append( | |
Bottleneck( | |
self.out_channels, | |
self.block_mid_channels, | |
dilation=dilation)) | |
self.dilated_encoder_blocks = nn.Sequential(*encoder_blocks) | |
def init_weights(self): | |
caffe2_xavier_init(self.lateral_conv) | |
caffe2_xavier_init(self.fpn_conv) | |
for m in [self.lateral_norm, self.fpn_norm]: | |
constant_init(m, 1) | |
for m in self.dilated_encoder_blocks.modules(): | |
if isinstance(m, nn.Conv2d): | |
normal_init(m, mean=0, std=0.01) | |
if is_norm(m): | |
constant_init(m, 1) | |
def forward(self, feature): | |
out = self.lateral_norm(self.lateral_conv(feature[-1])) | |
out = self.fpn_norm(self.fpn_conv(out)) | |
return self.dilated_encoder_blocks(out), | |