Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from mmcv.runner import ModuleList | |
from mmdet.core import (bbox2result, bbox2roi, bbox_mapping, build_assigner, | |
build_sampler, merge_aug_bboxes, merge_aug_masks, | |
multiclass_nms) | |
from ..builder import HEADS, build_head, build_roi_extractor | |
from .base_roi_head import BaseRoIHead | |
from .test_mixins import BBoxTestMixin, MaskTestMixin | |
class CascadeRoIHead(BaseRoIHead, BBoxTestMixin, MaskTestMixin): | |
"""Cascade roi head including one bbox head and one mask head. | |
https://arxiv.org/abs/1712.00726 | |
""" | |
def __init__(self, | |
num_stages, | |
stage_loss_weights, | |
bbox_roi_extractor=None, | |
bbox_head=None, | |
mask_roi_extractor=None, | |
mask_head=None, | |
shared_head=None, | |
train_cfg=None, | |
test_cfg=None, | |
pretrained=None, | |
init_cfg=None): | |
assert bbox_roi_extractor is not None | |
assert bbox_head is not None | |
assert shared_head is None, \ | |
'Shared head is not supported in Cascade RCNN anymore' | |
self.num_stages = num_stages | |
self.stage_loss_weights = stage_loss_weights | |
super(CascadeRoIHead, self).__init__( | |
bbox_roi_extractor=bbox_roi_extractor, | |
bbox_head=bbox_head, | |
mask_roi_extractor=mask_roi_extractor, | |
mask_head=mask_head, | |
shared_head=shared_head, | |
train_cfg=train_cfg, | |
test_cfg=test_cfg, | |
pretrained=pretrained, | |
init_cfg=init_cfg) | |
def init_bbox_head(self, bbox_roi_extractor, bbox_head): | |
"""Initialize box head and box roi extractor. | |
Args: | |
bbox_roi_extractor (dict): Config of box roi extractor. | |
bbox_head (dict): Config of box in box head. | |
""" | |
self.bbox_roi_extractor = ModuleList() | |
self.bbox_head = ModuleList() | |
if not isinstance(bbox_roi_extractor, list): | |
bbox_roi_extractor = [ | |
bbox_roi_extractor for _ in range(self.num_stages) | |
] | |
if not isinstance(bbox_head, list): | |
bbox_head = [bbox_head for _ in range(self.num_stages)] | |
assert len(bbox_roi_extractor) == len(bbox_head) == self.num_stages | |
for roi_extractor, head in zip(bbox_roi_extractor, bbox_head): | |
self.bbox_roi_extractor.append(build_roi_extractor(roi_extractor)) | |
self.bbox_head.append(build_head(head)) | |
def init_mask_head(self, mask_roi_extractor, mask_head): | |
"""Initialize mask head and mask roi extractor. | |
Args: | |
mask_roi_extractor (dict): Config of mask roi extractor. | |
mask_head (dict): Config of mask in mask head. | |
""" | |
self.mask_head = nn.ModuleList() | |
if not isinstance(mask_head, list): | |
mask_head = [mask_head for _ in range(self.num_stages)] | |
assert len(mask_head) == self.num_stages | |
for head in mask_head: | |
self.mask_head.append(build_head(head)) | |
if mask_roi_extractor is not None: | |
self.share_roi_extractor = False | |
self.mask_roi_extractor = ModuleList() | |
if not isinstance(mask_roi_extractor, list): | |
mask_roi_extractor = [ | |
mask_roi_extractor for _ in range(self.num_stages) | |
] | |
assert len(mask_roi_extractor) == self.num_stages | |
for roi_extractor in mask_roi_extractor: | |
self.mask_roi_extractor.append( | |
build_roi_extractor(roi_extractor)) | |
else: | |
self.share_roi_extractor = True | |
self.mask_roi_extractor = self.bbox_roi_extractor | |
def init_assigner_sampler(self): | |
"""Initialize assigner and sampler for each stage.""" | |
self.bbox_assigner = [] | |
self.bbox_sampler = [] | |
if self.train_cfg is not None: | |
for idx, rcnn_train_cfg in enumerate(self.train_cfg): | |
self.bbox_assigner.append( | |
build_assigner(rcnn_train_cfg.assigner)) | |
self.current_stage = idx | |
self.bbox_sampler.append( | |
build_sampler(rcnn_train_cfg.sampler, context=self)) | |
def forward_dummy(self, x, proposals): | |
"""Dummy forward function.""" | |
# bbox head | |
outs = () | |
rois = bbox2roi([proposals]) | |
if self.with_bbox: | |
for i in range(self.num_stages): | |
bbox_results = self._bbox_forward(i, x, rois) | |
outs = outs + (bbox_results['cls_score'], | |
bbox_results['bbox_pred']) | |
# mask heads | |
if self.with_mask: | |
mask_rois = rois[:100] | |
for i in range(self.num_stages): | |
mask_results = self._mask_forward(i, x, mask_rois) | |
outs = outs + (mask_results['mask_pred'], ) | |
return outs | |
def _bbox_forward(self, stage, x, rois): | |
"""Box head forward function used in both training and testing.""" | |
bbox_roi_extractor = self.bbox_roi_extractor[stage] | |
bbox_head = self.bbox_head[stage] | |
bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs], | |
rois) | |
# do not support caffe_c4 model anymore | |
cls_score, bbox_pred = bbox_head(bbox_feats) | |
bbox_results = dict( | |
cls_score=cls_score, bbox_pred=bbox_pred, bbox_feats=bbox_feats) | |
return bbox_results | |
def _bbox_forward_train(self, stage, x, sampling_results, gt_bboxes, | |
gt_labels, rcnn_train_cfg): | |
"""Run forward function and calculate loss for box head in training.""" | |
rois = bbox2roi([res.bboxes for res in sampling_results]) | |
bbox_results = self._bbox_forward(stage, x, rois) | |
bbox_targets = self.bbox_head[stage].get_targets( | |
sampling_results, gt_bboxes, gt_labels, rcnn_train_cfg) | |
loss_bbox = self.bbox_head[stage].loss(bbox_results['cls_score'], | |
bbox_results['bbox_pred'], rois, | |
*bbox_targets) | |
bbox_results.update( | |
loss_bbox=loss_bbox, rois=rois, bbox_targets=bbox_targets) | |
return bbox_results | |
def _mask_forward(self, stage, x, rois): | |
"""Mask head forward function used in both training and testing.""" | |
mask_roi_extractor = self.mask_roi_extractor[stage] | |
mask_head = self.mask_head[stage] | |
mask_feats = mask_roi_extractor(x[:mask_roi_extractor.num_inputs], | |
rois) | |
# do not support caffe_c4 model anymore | |
mask_pred = mask_head(mask_feats) | |
mask_results = dict(mask_pred=mask_pred) | |
return mask_results | |
def _mask_forward_train(self, | |
stage, | |
x, | |
sampling_results, | |
gt_masks, | |
rcnn_train_cfg, | |
bbox_feats=None): | |
"""Run forward function and calculate loss for mask head in | |
training.""" | |
pos_rois = bbox2roi([res.pos_bboxes for res in sampling_results]) | |
mask_results = self._mask_forward(stage, x, pos_rois) | |
mask_targets = self.mask_head[stage].get_targets( | |
sampling_results, gt_masks, rcnn_train_cfg) | |
pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) | |
loss_mask = self.mask_head[stage].loss(mask_results['mask_pred'], | |
mask_targets, pos_labels) | |
mask_results.update(loss_mask=loss_mask) | |
return mask_results | |
def forward_train(self, | |
x, | |
img_metas, | |
proposal_list, | |
gt_bboxes, | |
gt_labels, | |
gt_bboxes_ignore=None, | |
gt_masks=None): | |
""" | |
Args: | |
x (list[Tensor]): list of multi-level img features. | |
img_metas (list[dict]): list of image info dict where each dict | |
has: 'img_shape', 'scale_factor', 'flip', and may also contain | |
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. | |
For details on the values of these keys see | |
`mmdet/datasets/pipelines/formatting.py:Collect`. | |
proposals (list[Tensors]): list of region proposals. | |
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with | |
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. | |
gt_labels (list[Tensor]): class indices corresponding to each box | |
gt_bboxes_ignore (None | list[Tensor]): specify which bounding | |
boxes can be ignored when computing the loss. | |
gt_masks (None | Tensor) : true segmentation masks for each box | |
used if the architecture supports a segmentation task. | |
Returns: | |
dict[str, Tensor]: a dictionary of loss components | |
""" | |
losses = dict() | |
for i in range(self.num_stages): | |
self.current_stage = i | |
rcnn_train_cfg = self.train_cfg[i] | |
lw = self.stage_loss_weights[i] | |
# assign gts and sample proposals | |
sampling_results = [] | |
if self.with_bbox or self.with_mask: | |
bbox_assigner = self.bbox_assigner[i] | |
bbox_sampler = self.bbox_sampler[i] | |
num_imgs = len(img_metas) | |
if gt_bboxes_ignore is None: | |
gt_bboxes_ignore = [None for _ in range(num_imgs)] | |
for j in range(num_imgs): | |
assign_result = bbox_assigner.assign( | |
proposal_list[j], gt_bboxes[j], gt_bboxes_ignore[j], | |
gt_labels[j]) | |
sampling_result = bbox_sampler.sample( | |
assign_result, | |
proposal_list[j], | |
gt_bboxes[j], | |
gt_labels[j], | |
feats=[lvl_feat[j][None] for lvl_feat in x]) | |
sampling_results.append(sampling_result) | |
# bbox head forward and loss | |
bbox_results = self._bbox_forward_train(i, x, sampling_results, | |
gt_bboxes, gt_labels, | |
rcnn_train_cfg) | |
for name, value in bbox_results['loss_bbox'].items(): | |
losses[f's{i}.{name}'] = ( | |
value * lw if 'loss' in name else value) | |
# mask head forward and loss | |
if self.with_mask: | |
mask_results = self._mask_forward_train( | |
i, x, sampling_results, gt_masks, rcnn_train_cfg, | |
bbox_results['bbox_feats']) | |
for name, value in mask_results['loss_mask'].items(): | |
losses[f's{i}.{name}'] = ( | |
value * lw if 'loss' in name else value) | |
# refine bboxes | |
if i < self.num_stages - 1: | |
pos_is_gts = [res.pos_is_gt for res in sampling_results] | |
# bbox_targets is a tuple | |
roi_labels = bbox_results['bbox_targets'][0] | |
with torch.no_grad(): | |
cls_score = bbox_results['cls_score'] | |
if self.bbox_head[i].custom_activation: | |
cls_score = self.bbox_head[i].loss_cls.get_activation( | |
cls_score) | |
# Empty proposal. | |
if cls_score.numel() == 0: | |
break | |
roi_labels = torch.where( | |
roi_labels == self.bbox_head[i].num_classes, | |
cls_score[:, :-1].argmax(1), roi_labels) | |
proposal_list = self.bbox_head[i].refine_bboxes( | |
bbox_results['rois'], roi_labels, | |
bbox_results['bbox_pred'], pos_is_gts, img_metas) | |
return losses | |
def simple_test(self, x, proposal_list, img_metas, rescale=False): | |
"""Test without augmentation. | |
Args: | |
x (tuple[Tensor]): Features from upstream network. Each | |
has shape (batch_size, c, h, w). | |
proposal_list (list(Tensor)): Proposals from rpn head. | |
Each has shape (num_proposals, 5), last dimension | |
5 represent (x1, y1, x2, y2, score). | |
img_metas (list[dict]): Meta information of images. | |
rescale (bool): Whether to rescale the results to | |
the original image. Default: True. | |
Returns: | |
list[list[np.ndarray]] or list[tuple]: When no mask branch, | |
it is bbox results of each image and classes with type | |
`list[list[np.ndarray]]`. The outer list | |
corresponds to each image. The inner list | |
corresponds to each class. When the model has mask branch, | |
it contains bbox results and mask results. | |
The outer list corresponds to each image, and first element | |
of tuple is bbox results, second element is mask results. | |
""" | |
assert self.with_bbox, 'Bbox head must be implemented.' | |
num_imgs = len(proposal_list) | |
img_shapes = tuple(meta['img_shape'] for meta in img_metas) | |
ori_shapes = tuple(meta['ori_shape'] for meta in img_metas) | |
scale_factors = tuple(meta['scale_factor'] for meta in img_metas) | |
# "ms" in variable names means multi-stage | |
ms_bbox_result = {} | |
ms_segm_result = {} | |
ms_scores = [] | |
rcnn_test_cfg = self.test_cfg | |
rois = bbox2roi(proposal_list) | |
if rois.shape[0] == 0: | |
# There is no proposal in the whole batch | |
bbox_results = [[ | |
np.zeros((0, 5), dtype=np.float32) | |
for _ in range(self.bbox_head[-1].num_classes) | |
]] * num_imgs | |
if self.with_mask: | |
mask_classes = self.mask_head[-1].num_classes | |
segm_results = [[[] for _ in range(mask_classes)] | |
for _ in range(num_imgs)] | |
results = list(zip(bbox_results, segm_results)) | |
else: | |
results = bbox_results | |
return results | |
for i in range(self.num_stages): | |
bbox_results = self._bbox_forward(i, x, rois) | |
# split batch bbox prediction back to each image | |
cls_score = bbox_results['cls_score'] | |
bbox_pred = bbox_results['bbox_pred'] | |
num_proposals_per_img = tuple( | |
len(proposals) for proposals in proposal_list) | |
rois = rois.split(num_proposals_per_img, 0) | |
cls_score = cls_score.split(num_proposals_per_img, 0) | |
if isinstance(bbox_pred, torch.Tensor): | |
bbox_pred = bbox_pred.split(num_proposals_per_img, 0) | |
else: | |
bbox_pred = self.bbox_head[i].bbox_pred_split( | |
bbox_pred, num_proposals_per_img) | |
ms_scores.append(cls_score) | |
if i < self.num_stages - 1: | |
if self.bbox_head[i].custom_activation: | |
cls_score = [ | |
self.bbox_head[i].loss_cls.get_activation(s) | |
for s in cls_score | |
] | |
refine_rois_list = [] | |
for j in range(num_imgs): | |
if rois[j].shape[0] > 0: | |
bbox_label = cls_score[j][:, :-1].argmax(dim=1) | |
refined_rois = self.bbox_head[i].regress_by_class( | |
rois[j], bbox_label, bbox_pred[j], img_metas[j]) | |
refine_rois_list.append(refined_rois) | |
rois = torch.cat(refine_rois_list) | |
# average scores of each image by stages | |
cls_score = [ | |
sum([score[i] for score in ms_scores]) / float(len(ms_scores)) | |
for i in range(num_imgs) | |
] | |
# apply bbox post-processing to each image individually | |
det_bboxes = [] | |
det_labels = [] | |
for i in range(num_imgs): | |
det_bbox, det_label = self.bbox_head[-1].get_bboxes( | |
rois[i], | |
cls_score[i], | |
bbox_pred[i], | |
img_shapes[i], | |
scale_factors[i], | |
rescale=rescale, | |
cfg=rcnn_test_cfg) | |
det_bboxes.append(det_bbox) | |
det_labels.append(det_label) | |
bbox_results = [ | |
bbox2result(det_bboxes[i], det_labels[i], | |
self.bbox_head[-1].num_classes) | |
for i in range(num_imgs) | |
] | |
ms_bbox_result['ensemble'] = bbox_results | |
if self.with_mask: | |
if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): | |
mask_classes = self.mask_head[-1].num_classes | |
segm_results = [[[] for _ in range(mask_classes)] | |
for _ in range(num_imgs)] | |
else: | |
if rescale and not isinstance(scale_factors[0], float): | |
scale_factors = [ | |
torch.from_numpy(scale_factor).to(det_bboxes[0].device) | |
for scale_factor in scale_factors | |
] | |
_bboxes = [ | |
det_bboxes[i][:, :4] * | |
scale_factors[i] if rescale else det_bboxes[i][:, :4] | |
for i in range(len(det_bboxes)) | |
] | |
mask_rois = bbox2roi(_bboxes) | |
num_mask_rois_per_img = tuple( | |
_bbox.size(0) for _bbox in _bboxes) | |
aug_masks = [] | |
for i in range(self.num_stages): | |
mask_results = self._mask_forward(i, x, mask_rois) | |
mask_pred = mask_results['mask_pred'] | |
# split batch mask prediction back to each image | |
mask_pred = mask_pred.split(num_mask_rois_per_img, 0) | |
aug_masks.append([ | |
m.sigmoid().cpu().detach().numpy() for m in mask_pred | |
]) | |
# apply mask post-processing to each image individually | |
segm_results = [] | |
for i in range(num_imgs): | |
if det_bboxes[i].shape[0] == 0: | |
segm_results.append( | |
[[] | |
for _ in range(self.mask_head[-1].num_classes)]) | |
else: | |
aug_mask = [mask[i] for mask in aug_masks] | |
merged_masks = merge_aug_masks( | |
aug_mask, [[img_metas[i]]] * self.num_stages, | |
rcnn_test_cfg) | |
segm_result = self.mask_head[-1].get_seg_masks( | |
merged_masks, _bboxes[i], det_labels[i], | |
rcnn_test_cfg, ori_shapes[i], scale_factors[i], | |
rescale) | |
segm_results.append(segm_result) | |
ms_segm_result['ensemble'] = segm_results | |
if self.with_mask: | |
results = list( | |
zip(ms_bbox_result['ensemble'], ms_segm_result['ensemble'])) | |
else: | |
results = ms_bbox_result['ensemble'] | |
return results | |
def aug_test(self, features, proposal_list, img_metas, rescale=False): | |
"""Test with augmentations. | |
If rescale is False, then returned bboxes and masks will fit the scale | |
of imgs[0]. | |
""" | |
rcnn_test_cfg = self.test_cfg | |
aug_bboxes = [] | |
aug_scores = [] | |
for x, img_meta in zip(features, img_metas): | |
# only one image in the batch | |
img_shape = img_meta[0]['img_shape'] | |
scale_factor = img_meta[0]['scale_factor'] | |
flip = img_meta[0]['flip'] | |
flip_direction = img_meta[0]['flip_direction'] | |
proposals = bbox_mapping(proposal_list[0][:, :4], img_shape, | |
scale_factor, flip, flip_direction) | |
# "ms" in variable names means multi-stage | |
ms_scores = [] | |
rois = bbox2roi([proposals]) | |
if rois.shape[0] == 0: | |
# There is no proposal in the single image | |
aug_bboxes.append(rois.new_zeros(0, 4)) | |
aug_scores.append(rois.new_zeros(0, 1)) | |
continue | |
for i in range(self.num_stages): | |
bbox_results = self._bbox_forward(i, x, rois) | |
ms_scores.append(bbox_results['cls_score']) | |
if i < self.num_stages - 1: | |
cls_score = bbox_results['cls_score'] | |
if self.bbox_head[i].custom_activation: | |
cls_score = self.bbox_head[i].loss_cls.get_activation( | |
cls_score) | |
bbox_label = cls_score[:, :-1].argmax(dim=1) | |
rois = self.bbox_head[i].regress_by_class( | |
rois, bbox_label, bbox_results['bbox_pred'], | |
img_meta[0]) | |
cls_score = sum(ms_scores) / float(len(ms_scores)) | |
bboxes, scores = self.bbox_head[-1].get_bboxes( | |
rois, | |
cls_score, | |
bbox_results['bbox_pred'], | |
img_shape, | |
scale_factor, | |
rescale=False, | |
cfg=None) | |
aug_bboxes.append(bboxes) | |
aug_scores.append(scores) | |
# after merging, bboxes will be rescaled to the original image size | |
merged_bboxes, merged_scores = merge_aug_bboxes( | |
aug_bboxes, aug_scores, img_metas, rcnn_test_cfg) | |
det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores, | |
rcnn_test_cfg.score_thr, | |
rcnn_test_cfg.nms, | |
rcnn_test_cfg.max_per_img) | |
bbox_result = bbox2result(det_bboxes, det_labels, | |
self.bbox_head[-1].num_classes) | |
if self.with_mask: | |
if det_bboxes.shape[0] == 0: | |
segm_result = [[] | |
for _ in range(self.mask_head[-1].num_classes)] | |
else: | |
aug_masks = [] | |
aug_img_metas = [] | |
for x, img_meta in zip(features, img_metas): | |
img_shape = img_meta[0]['img_shape'] | |
scale_factor = img_meta[0]['scale_factor'] | |
flip = img_meta[0]['flip'] | |
flip_direction = img_meta[0]['flip_direction'] | |
_bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, | |
scale_factor, flip, flip_direction) | |
mask_rois = bbox2roi([_bboxes]) | |
for i in range(self.num_stages): | |
mask_results = self._mask_forward(i, x, mask_rois) | |
aug_masks.append( | |
mask_results['mask_pred'].sigmoid().cpu().numpy()) | |
aug_img_metas.append(img_meta) | |
merged_masks = merge_aug_masks(aug_masks, aug_img_metas, | |
self.test_cfg) | |
ori_shape = img_metas[0][0]['ori_shape'] | |
dummy_scale_factor = np.ones(4) | |
segm_result = self.mask_head[-1].get_seg_masks( | |
merged_masks, | |
det_bboxes, | |
det_labels, | |
rcnn_test_cfg, | |
ori_shape, | |
scale_factor=dummy_scale_factor, | |
rescale=False) | |
return [(bbox_result, segm_result)] | |
else: | |
return [bbox_result] | |
def onnx_export(self, x, proposals, img_metas): | |
assert self.with_bbox, 'Bbox head must be implemented.' | |
assert proposals.shape[0] == 1, 'Only support one input image ' \ | |
'while in exporting to ONNX' | |
# remove the scores | |
rois = proposals[..., :-1] | |
batch_size = rois.shape[0] | |
num_proposals_per_img = rois.shape[1] | |
# Eliminate the batch dimension | |
rois = rois.view(-1, 4) | |
# add dummy batch index | |
rois = torch.cat([rois.new_zeros(rois.shape[0], 1), rois], dim=-1) | |
max_shape = img_metas[0]['img_shape_for_onnx'] | |
ms_scores = [] | |
rcnn_test_cfg = self.test_cfg | |
for i in range(self.num_stages): | |
bbox_results = self._bbox_forward(i, x, rois) | |
cls_score = bbox_results['cls_score'] | |
bbox_pred = bbox_results['bbox_pred'] | |
# Recover the batch dimension | |
rois = rois.reshape(batch_size, num_proposals_per_img, | |
rois.size(-1)) | |
cls_score = cls_score.reshape(batch_size, num_proposals_per_img, | |
cls_score.size(-1)) | |
bbox_pred = bbox_pred.reshape(batch_size, num_proposals_per_img, 4) | |
ms_scores.append(cls_score) | |
if i < self.num_stages - 1: | |
assert self.bbox_head[i].reg_class_agnostic | |
new_rois = self.bbox_head[i].bbox_coder.decode( | |
rois[..., 1:], bbox_pred, max_shape=max_shape) | |
rois = new_rois.reshape(-1, new_rois.shape[-1]) | |
# add dummy batch index | |
rois = torch.cat([rois.new_zeros(rois.shape[0], 1), rois], | |
dim=-1) | |
cls_score = sum(ms_scores) / float(len(ms_scores)) | |
bbox_pred = bbox_pred.reshape(batch_size, num_proposals_per_img, 4) | |
rois = rois.reshape(batch_size, num_proposals_per_img, -1) | |
det_bboxes, det_labels = self.bbox_head[-1].onnx_export( | |
rois, cls_score, bbox_pred, max_shape, cfg=rcnn_test_cfg) | |
if not self.with_mask: | |
return det_bboxes, det_labels | |
else: | |
batch_index = torch.arange( | |
det_bboxes.size(0), | |
device=det_bboxes.device).float().view(-1, 1, 1).expand( | |
det_bboxes.size(0), det_bboxes.size(1), 1) | |
rois = det_bboxes[..., :4] | |
mask_rois = torch.cat([batch_index, rois], dim=-1) | |
mask_rois = mask_rois.view(-1, 5) | |
aug_masks = [] | |
for i in range(self.num_stages): | |
mask_results = self._mask_forward(i, x, mask_rois) | |
mask_pred = mask_results['mask_pred'] | |
aug_masks.append(mask_pred) | |
max_shape = img_metas[0]['img_shape_for_onnx'] | |
# calculate the mean of masks from several stage | |
mask_pred = sum(aug_masks) / len(aug_masks) | |
segm_results = self.mask_head[-1].onnx_export( | |
mask_pred, rois.reshape(-1, 4), det_labels.reshape(-1), | |
self.test_cfg, max_shape) | |
segm_results = segm_results.reshape(batch_size, | |
det_bboxes.shape[1], | |
max_shape[0], max_shape[1]) | |
return det_bboxes, det_labels, segm_results | |