# Copyright (c) OpenMMLab. All rights reserved. import torch def images_to_levels(target, num_levels): """Convert targets by image to targets by feature level. [target_img0, target_img1] -> [target_level0, target_level1, ...] """ target = torch.stack(target, 0) level_targets = [] start = 0 for n in num_levels: end = start + n # level_targets.append(target[:, start:end].squeeze(0)) level_targets.append(target[:, start:end]) start = end return level_targets def anchor_inside_flags(flat_anchors, valid_flags, img_shape, allowed_border=0): """Check whether the anchors are inside the border. Args: flat_anchors (torch.Tensor): Flatten anchors, shape (n, 4). valid_flags (torch.Tensor): An existing valid flags of anchors. img_shape (tuple(int)): Shape of current image. allowed_border (int, optional): The border to allow the valid anchor. Defaults to 0. Returns: torch.Tensor: Flags indicating whether the anchors are inside a \ valid range. """ img_h, img_w = img_shape[:2] if allowed_border >= 0: inside_flags = valid_flags & \ (flat_anchors[:, 0] >= -allowed_border) & \ (flat_anchors[:, 1] >= -allowed_border) & \ (flat_anchors[:, 2] < img_w + allowed_border) & \ (flat_anchors[:, 3] < img_h + allowed_border) else: inside_flags = valid_flags return inside_flags def calc_region(bbox, ratio, featmap_size=None): """Calculate a proportional bbox region. The bbox center are fixed and the new h' and w' is h * ratio and w * ratio. Args: bbox (Tensor): Bboxes to calculate regions, shape (n, 4). ratio (float): Ratio of the output region. featmap_size (tuple): Feature map size used for clipping the boundary. Returns: tuple: x1, y1, x2, y2 """ x1 = torch.round((1 - ratio) * bbox[0] + ratio * bbox[2]).long() y1 = torch.round((1 - ratio) * bbox[1] + ratio * bbox[3]).long() x2 = torch.round(ratio * bbox[0] + (1 - ratio) * bbox[2]).long() y2 = torch.round(ratio * bbox[1] + (1 - ratio) * bbox[3]).long() if featmap_size is not None: x1 = x1.clamp(min=0, max=featmap_size[1]) y1 = y1.clamp(min=0, max=featmap_size[0]) x2 = x2.clamp(min=0, max=featmap_size[1]) y2 = y2.clamp(min=0, max=featmap_size[0]) return (x1, y1, x2, y2)