# Copyright (c) OpenMMLab. All rights reserved. from mmcv.runner.hooks import HOOKS from mmcv.runner.hooks.lr_updater import (CosineAnnealingLrUpdaterHook, annealing_cos) @HOOKS.register_module() class YOLOXLrUpdaterHook(CosineAnnealingLrUpdaterHook): """YOLOX learning rate scheme. There are two main differences between YOLOXLrUpdaterHook and CosineAnnealingLrUpdaterHook. 1. When the current running epoch is greater than `max_epoch-last_epoch`, a fixed learning rate will be used 2. The exp warmup scheme is different with LrUpdaterHook in MMCV Args: num_last_epochs (int): The number of epochs with a fixed learning rate before the end of the training. """ def __init__(self, num_last_epochs, **kwargs): self.num_last_epochs = num_last_epochs super(YOLOXLrUpdaterHook, self).__init__(**kwargs) def get_warmup_lr(self, cur_iters): def _get_warmup_lr(cur_iters, regular_lr): # exp warmup scheme k = self.warmup_ratio * pow( (cur_iters + 1) / float(self.warmup_iters), 2) warmup_lr = [_lr * k for _lr in regular_lr] return warmup_lr if isinstance(self.base_lr, dict): lr_groups = {} for key, base_lr in self.base_lr.items(): lr_groups[key] = _get_warmup_lr(cur_iters, base_lr) return lr_groups else: return _get_warmup_lr(cur_iters, self.base_lr) def get_lr(self, runner, base_lr): last_iter = len(runner.data_loader) * self.num_last_epochs if self.by_epoch: progress = runner.epoch max_progress = runner.max_epochs else: progress = runner.iter max_progress = runner.max_iters progress += 1 if self.min_lr_ratio is not None: target_lr = base_lr * self.min_lr_ratio else: target_lr = self.min_lr if progress >= max_progress - last_iter: # fixed learning rate return target_lr else: return annealing_cos( base_lr, target_lr, (progress - self.warmup_iters) / (max_progress - self.warmup_iters - last_iter))