# Copyright (c) OpenMMLab. All rights reserved. import mmcv import numpy as np import torch import torch.nn as nn from ..builder import LOSSES from .utils import weighted_loss @mmcv.jit(derivate=True, coderize=True) @weighted_loss def balanced_l1_loss(pred, target, beta=1.0, alpha=0.5, gamma=1.5, reduction='mean'): """Calculate balanced L1 loss. Please see the `Libra R-CNN `_ Args: pred (torch.Tensor): The prediction with shape (N, 4). target (torch.Tensor): The learning target of the prediction with shape (N, 4). beta (float): The loss is a piecewise function of prediction and target and ``beta`` serves as a threshold for the difference between the prediction and target. Defaults to 1.0. alpha (float): The denominator ``alpha`` in the balanced L1 loss. Defaults to 0.5. gamma (float): The ``gamma`` in the balanced L1 loss. Defaults to 1.5. reduction (str, optional): The method that reduces the loss to a scalar. Options are "none", "mean" and "sum". Returns: torch.Tensor: The calculated loss """ assert beta > 0 if target.numel() == 0: return pred.sum() * 0 assert pred.size() == target.size() diff = torch.abs(pred - target) b = np.e**(gamma / alpha) - 1 loss = torch.where( diff < beta, alpha / b * (b * diff + 1) * torch.log(b * diff / beta + 1) - alpha * diff, gamma * diff + gamma / b - alpha * beta) return loss @LOSSES.register_module() class BalancedL1Loss(nn.Module): """Balanced L1 Loss. arXiv: https://arxiv.org/pdf/1904.02701.pdf (CVPR 2019) Args: alpha (float): The denominator ``alpha`` in the balanced L1 loss. Defaults to 0.5. gamma (float): The ``gamma`` in the balanced L1 loss. Defaults to 1.5. beta (float, optional): The loss is a piecewise function of prediction and target. ``beta`` serves as a threshold for the difference between the prediction and target. Defaults to 1.0. reduction (str, optional): The method that reduces the loss to a scalar. Options are "none", "mean" and "sum". loss_weight (float, optional): The weight of the loss. Defaults to 1.0 """ def __init__(self, alpha=0.5, gamma=1.5, beta=1.0, reduction='mean', loss_weight=1.0): super(BalancedL1Loss, self).__init__() self.alpha = alpha self.gamma = gamma self.beta = beta self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None, **kwargs): """Forward function of loss. Args: pred (torch.Tensor): The prediction with shape (N, 4). target (torch.Tensor): The learning target of the prediction with shape (N, 4). weight (torch.Tensor, optional): Sample-wise loss weight with shape (N, ). avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Options are "none", "mean" and "sum". Returns: torch.Tensor: The calculated loss """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss_bbox = self.loss_weight * balanced_l1_loss( pred, target, weight, alpha=self.alpha, gamma=self.gamma, beta=self.beta, reduction=reduction, avg_factor=avg_factor, **kwargs) return loss_bbox