# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcv.cnn import ConvModule from mmcv.runner import BaseModule, ModuleList from mmdet.models.backbones.resnet import Bottleneck from mmdet.models.builder import HEADS from .bbox_head import BBoxHead class BasicResBlock(BaseModule): """Basic residual block. This block is a little different from the block in the ResNet backbone. The kernel size of conv1 is 1 in this block while 3 in ResNet BasicBlock. Args: in_channels (int): Channels of the input feature map. out_channels (int): Channels of the output feature map. conv_cfg (dict): The config dict for convolution layers. norm_cfg (dict): The config dict for normalization layers. init_cfg (dict or list[dict], optional): Initialization config dict. Default: None """ def __init__(self, in_channels, out_channels, conv_cfg=None, norm_cfg=dict(type='BN'), init_cfg=None): super(BasicResBlock, self).__init__(init_cfg) # main path self.conv1 = ConvModule( in_channels, in_channels, kernel_size=3, padding=1, bias=False, conv_cfg=conv_cfg, norm_cfg=norm_cfg) self.conv2 = ConvModule( in_channels, out_channels, kernel_size=1, bias=False, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=None) # identity path self.conv_identity = ConvModule( in_channels, out_channels, kernel_size=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=None) self.relu = nn.ReLU(inplace=True) def forward(self, x): identity = x x = self.conv1(x) x = self.conv2(x) identity = self.conv_identity(identity) out = x + identity out = self.relu(out) return out @HEADS.register_module() class DoubleConvFCBBoxHead(BBoxHead): r"""Bbox head used in Double-Head R-CNN .. code-block:: none /-> cls /-> shared convs -> \-> reg roi features /-> cls \-> shared fc -> \-> reg """ # noqa: W605 def __init__(self, num_convs=0, num_fcs=0, conv_out_channels=1024, fc_out_channels=1024, conv_cfg=None, norm_cfg=dict(type='BN'), init_cfg=dict( type='Normal', override=[ dict(type='Normal', name='fc_cls', std=0.01), dict(type='Normal', name='fc_reg', std=0.001), dict( type='Xavier', name='fc_branch', distribution='uniform') ]), **kwargs): kwargs.setdefault('with_avg_pool', True) super(DoubleConvFCBBoxHead, self).__init__(init_cfg=init_cfg, **kwargs) assert self.with_avg_pool assert num_convs > 0 assert num_fcs > 0 self.num_convs = num_convs self.num_fcs = num_fcs self.conv_out_channels = conv_out_channels self.fc_out_channels = fc_out_channels self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg # increase the channel of input features self.res_block = BasicResBlock(self.in_channels, self.conv_out_channels) # add conv heads self.conv_branch = self._add_conv_branch() # add fc heads self.fc_branch = self._add_fc_branch() out_dim_reg = 4 if self.reg_class_agnostic else 4 * self.num_classes self.fc_reg = nn.Linear(self.conv_out_channels, out_dim_reg) self.fc_cls = nn.Linear(self.fc_out_channels, self.num_classes + 1) self.relu = nn.ReLU(inplace=True) def _add_conv_branch(self): """Add the fc branch which consists of a sequential of conv layers.""" branch_convs = ModuleList() for i in range(self.num_convs): branch_convs.append( Bottleneck( inplanes=self.conv_out_channels, planes=self.conv_out_channels // 4, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) return branch_convs def _add_fc_branch(self): """Add the fc branch which consists of a sequential of fc layers.""" branch_fcs = ModuleList() for i in range(self.num_fcs): fc_in_channels = ( self.in_channels * self.roi_feat_area if i == 0 else self.fc_out_channels) branch_fcs.append(nn.Linear(fc_in_channels, self.fc_out_channels)) return branch_fcs def forward(self, x_cls, x_reg): # conv head x_conv = self.res_block(x_reg) for conv in self.conv_branch: x_conv = conv(x_conv) if self.with_avg_pool: x_conv = self.avg_pool(x_conv) x_conv = x_conv.view(x_conv.size(0), -1) bbox_pred = self.fc_reg(x_conv) # fc head x_fc = x_cls.view(x_cls.size(0), -1) for fc in self.fc_branch: x_fc = self.relu(fc(x_fc)) cls_score = self.fc_cls(x_fc) return cls_score, bbox_pred