# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn from mmcv.runner import auto_fp16, force_fp32 from mmdet.core import mask_target from mmdet.models.builder import HEADS from mmdet.models.dense_heads.atss_head import reduce_mean from mmdet.models.utils import build_transformer from .fcn_mask_head import FCNMaskHead @HEADS.register_module() class DynamicMaskHead(FCNMaskHead): r"""Dynamic Mask Head for `Instances as Queries `_ Args: num_convs (int): Number of convolution layer. Defaults to 4. roi_feat_size (int): The output size of RoI extractor, Defaults to 14. in_channels (int): Input feature channels. Defaults to 256. conv_kernel_size (int): Kernel size of convolution layers. Defaults to 3. conv_out_channels (int): Output channels of convolution layers. Defaults to 256. num_classes (int): Number of classes. Defaults to 80 class_agnostic (int): Whether generate class agnostic prediction. Defaults to False. dropout (float): Probability of drop the channel. Defaults to 0.0 upsample_cfg (dict): The config for upsample layer. conv_cfg (dict): The convolution layer config. norm_cfg (dict): The norm layer config. dynamic_conv_cfg (dict): The dynamic convolution layer config. loss_mask (dict): The config for mask loss. """ def __init__(self, num_convs=4, roi_feat_size=14, in_channels=256, conv_kernel_size=3, conv_out_channels=256, num_classes=80, class_agnostic=False, upsample_cfg=dict(type='deconv', scale_factor=2), conv_cfg=None, norm_cfg=None, dynamic_conv_cfg=dict( type='DynamicConv', in_channels=256, feat_channels=64, out_channels=256, input_feat_shape=14, with_proj=False, act_cfg=dict(type='ReLU', inplace=True), norm_cfg=dict(type='LN')), loss_mask=dict(type='DiceLoss', loss_weight=8.0), **kwargs): super(DynamicMaskHead, self).__init__( num_convs=num_convs, roi_feat_size=roi_feat_size, in_channels=in_channels, conv_kernel_size=conv_kernel_size, conv_out_channels=conv_out_channels, num_classes=num_classes, class_agnostic=class_agnostic, upsample_cfg=upsample_cfg, conv_cfg=conv_cfg, norm_cfg=norm_cfg, loss_mask=loss_mask, **kwargs) assert class_agnostic is False, \ 'DynamicMaskHead only support class_agnostic=False' self.fp16_enabled = False self.instance_interactive_conv = build_transformer(dynamic_conv_cfg) def init_weights(self): """Use xavier initialization for all weight parameter and set classification head bias as a specific value when use focal loss.""" for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) nn.init.constant_(self.conv_logits.bias, 0.) @auto_fp16() def forward(self, roi_feat, proposal_feat): """Forward function of DynamicMaskHead. Args: roi_feat (Tensor): Roi-pooling features with shape (batch_size*num_proposals, feature_dimensions, pooling_h , pooling_w). proposal_feat (Tensor): Intermediate feature get from diihead in last stage, has shape (batch_size*num_proposals, feature_dimensions) Returns: mask_pred (Tensor): Predicted foreground masks with shape (batch_size*num_proposals, num_classes, pooling_h*2, pooling_w*2). """ proposal_feat = proposal_feat.reshape(-1, self.in_channels) proposal_feat_iic = self.instance_interactive_conv( proposal_feat, roi_feat) x = proposal_feat_iic.permute(0, 2, 1).reshape(roi_feat.size()) for conv in self.convs: x = conv(x) if self.upsample is not None: x = self.upsample(x) if self.upsample_method == 'deconv': x = self.relu(x) mask_pred = self.conv_logits(x) return mask_pred @force_fp32(apply_to=('mask_pred', )) def loss(self, mask_pred, mask_targets, labels): num_pos = labels.new_ones(labels.size()).float().sum() avg_factor = torch.clamp(reduce_mean(num_pos), min=1.).item() loss = dict() if mask_pred.size(0) == 0: loss_mask = mask_pred.sum() else: loss_mask = self.loss_mask( mask_pred[torch.arange(num_pos).long(), labels, ...].sigmoid(), mask_targets, avg_factor=avg_factor) loss['loss_mask'] = loss_mask return loss def get_targets(self, sampling_results, gt_masks, rcnn_train_cfg): pos_proposals = [res.pos_bboxes for res in sampling_results] pos_assigned_gt_inds = [ res.pos_assigned_gt_inds for res in sampling_results ] mask_targets = mask_target(pos_proposals, pos_assigned_gt_inds, gt_masks, rcnn_train_cfg) return mask_targets