# Copyright (c) OpenMMLab. All rights reserved. # Modified from https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend # noqa import os import warnings import numpy as np import torch import torch.nn.functional as F from mmcv.ops import point_sample, rel_roi_point_to_rel_img_point from mmdet.core import bbox2roi, bbox_mapping, merge_aug_masks from .. import builder from ..builder import HEADS from .standard_roi_head import StandardRoIHead @HEADS.register_module() class PointRendRoIHead(StandardRoIHead): """`PointRend `_.""" def __init__(self, point_head, *args, **kwargs): super().__init__(*args, **kwargs) assert self.with_bbox and self.with_mask self.init_point_head(point_head) def init_point_head(self, point_head): """Initialize ``point_head``""" self.point_head = builder.build_head(point_head) def _mask_forward_train(self, x, sampling_results, bbox_feats, gt_masks, img_metas): """Run forward function and calculate loss for mask head and point head in training.""" mask_results = super()._mask_forward_train(x, sampling_results, bbox_feats, gt_masks, img_metas) if mask_results['loss_mask'] is not None: loss_point = self._mask_point_forward_train( x, sampling_results, mask_results['mask_pred'], gt_masks, img_metas) mask_results['loss_mask'].update(loss_point) return mask_results def _mask_point_forward_train(self, x, sampling_results, mask_pred, gt_masks, img_metas): """Run forward function and calculate loss for point head in training.""" pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) rel_roi_points = self.point_head.get_roi_rel_points_train( mask_pred, pos_labels, cfg=self.train_cfg) rois = bbox2roi([res.pos_bboxes for res in sampling_results]) fine_grained_point_feats = self._get_fine_grained_point_feats( x, rois, rel_roi_points, img_metas) coarse_point_feats = point_sample(mask_pred, rel_roi_points) mask_point_pred = self.point_head(fine_grained_point_feats, coarse_point_feats) mask_point_target = self.point_head.get_targets( rois, rel_roi_points, sampling_results, gt_masks, self.train_cfg) loss_mask_point = self.point_head.loss(mask_point_pred, mask_point_target, pos_labels) return loss_mask_point def _get_fine_grained_point_feats(self, x, rois, rel_roi_points, img_metas): """Sample fine grained feats from each level feature map and concatenate them together. Args: x (tuple[Tensor]): Feature maps of all scale level. rois (Tensor): shape (num_rois, 5). rel_roi_points (Tensor): A tensor of shape (num_rois, num_points, 2) that contains [0, 1] x [0, 1] normalized coordinates of the most uncertain points from the [mask_height, mask_width] grid. img_metas (list[dict]): Image meta info. Returns: Tensor: The fine grained features for each points, has shape (num_rois, feats_channels, num_points). """ num_imgs = len(img_metas) fine_grained_feats = [] for idx in range(self.mask_roi_extractor.num_inputs): feats = x[idx] spatial_scale = 1. / float( self.mask_roi_extractor.featmap_strides[idx]) point_feats = [] for batch_ind in range(num_imgs): # unravel batch dim feat = feats[batch_ind].unsqueeze(0) inds = (rois[:, 0].long() == batch_ind) if inds.any(): rel_img_points = rel_roi_point_to_rel_img_point( rois[inds], rel_roi_points[inds], feat.shape[2:], spatial_scale).unsqueeze(0) point_feat = point_sample(feat, rel_img_points) point_feat = point_feat.squeeze(0).transpose(0, 1) point_feats.append(point_feat) fine_grained_feats.append(torch.cat(point_feats, dim=0)) return torch.cat(fine_grained_feats, dim=1) def _mask_point_forward_test(self, x, rois, label_pred, mask_pred, img_metas): """Mask refining process with point head in testing. Args: x (tuple[Tensor]): Feature maps of all scale level. rois (Tensor): shape (num_rois, 5). label_pred (Tensor): The predication class for each rois. mask_pred (Tensor): The predication coarse masks of shape (num_rois, num_classes, small_size, small_size). img_metas (list[dict]): Image meta info. Returns: Tensor: The refined masks of shape (num_rois, num_classes, large_size, large_size). """ refined_mask_pred = mask_pred.clone() for subdivision_step in range(self.test_cfg.subdivision_steps): refined_mask_pred = F.interpolate( refined_mask_pred, scale_factor=self.test_cfg.scale_factor, mode='bilinear', align_corners=False) # If `subdivision_num_points` is larger or equal to the # resolution of the next step, then we can skip this step num_rois, channels, mask_height, mask_width = \ refined_mask_pred.shape if (self.test_cfg.subdivision_num_points >= self.test_cfg.scale_factor**2 * mask_height * mask_width and subdivision_step < self.test_cfg.subdivision_steps - 1): continue point_indices, rel_roi_points = \ self.point_head.get_roi_rel_points_test( refined_mask_pred, label_pred, cfg=self.test_cfg) fine_grained_point_feats = self._get_fine_grained_point_feats( x, rois, rel_roi_points, img_metas) coarse_point_feats = point_sample(mask_pred, rel_roi_points) mask_point_pred = self.point_head(fine_grained_point_feats, coarse_point_feats) point_indices = point_indices.unsqueeze(1).expand(-1, channels, -1) refined_mask_pred = refined_mask_pred.reshape( num_rois, channels, mask_height * mask_width) refined_mask_pred = refined_mask_pred.scatter_( 2, point_indices, mask_point_pred) refined_mask_pred = refined_mask_pred.view(num_rois, channels, mask_height, mask_width) return refined_mask_pred def simple_test_mask(self, x, img_metas, det_bboxes, det_labels, rescale=False): """Obtain mask prediction without augmentation.""" ori_shapes = tuple(meta['ori_shape'] for meta in img_metas) scale_factors = tuple(meta['scale_factor'] for meta in img_metas) if isinstance(scale_factors[0], float): warnings.warn( 'Scale factor in img_metas should be a ' 'ndarray with shape (4,) ' 'arrange as (factor_w, factor_h, factor_w, factor_h), ' 'The scale_factor with float type has been deprecated. ') scale_factors = np.array([scale_factors] * 4, dtype=np.float32) num_imgs = len(det_bboxes) if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): segm_results = [[[] for _ in range(self.mask_head.num_classes)] for _ in range(num_imgs)] else: # if det_bboxes is rescaled to the original image size, we need to # rescale it back to the testing scale to obtain RoIs. _bboxes = [det_bboxes[i][:, :4] for i in range(len(det_bboxes))] if rescale: scale_factors = [ torch.from_numpy(scale_factor).to(det_bboxes[0].device) for scale_factor in scale_factors ] _bboxes = [ _bboxes[i] * scale_factors[i] for i in range(len(_bboxes)) ] mask_rois = bbox2roi(_bboxes) mask_results = self._mask_forward(x, mask_rois) # split batch mask prediction back to each image mask_pred = mask_results['mask_pred'] num_mask_roi_per_img = [len(det_bbox) for det_bbox in det_bboxes] mask_preds = mask_pred.split(num_mask_roi_per_img, 0) mask_rois = mask_rois.split(num_mask_roi_per_img, 0) # apply mask post-processing to each image individually segm_results = [] for i in range(num_imgs): if det_bboxes[i].shape[0] == 0: segm_results.append( [[] for _ in range(self.mask_head.num_classes)]) else: x_i = [xx[[i]] for xx in x] mask_rois_i = mask_rois[i] mask_rois_i[:, 0] = 0 # TODO: remove this hack mask_pred_i = self._mask_point_forward_test( x_i, mask_rois_i, det_labels[i], mask_preds[i], [img_metas]) segm_result = self.mask_head.get_seg_masks( mask_pred_i, _bboxes[i], det_labels[i], self.test_cfg, ori_shapes[i], scale_factors[i], rescale) segm_results.append(segm_result) return segm_results def aug_test_mask(self, feats, img_metas, det_bboxes, det_labels): """Test for mask head with test time augmentation.""" if det_bboxes.shape[0] == 0: segm_result = [[] for _ in range(self.mask_head.num_classes)] else: aug_masks = [] for x, img_meta in zip(feats, img_metas): img_shape = img_meta[0]['img_shape'] scale_factor = img_meta[0]['scale_factor'] flip = img_meta[0]['flip'] _bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, scale_factor, flip) mask_rois = bbox2roi([_bboxes]) mask_results = self._mask_forward(x, mask_rois) mask_results['mask_pred'] = self._mask_point_forward_test( x, mask_rois, det_labels, mask_results['mask_pred'], img_meta) # convert to numpy array to save memory aug_masks.append( mask_results['mask_pred'].sigmoid().cpu().numpy()) merged_masks = merge_aug_masks(aug_masks, img_metas, self.test_cfg) ori_shape = img_metas[0][0]['ori_shape'] segm_result = self.mask_head.get_seg_masks( merged_masks, det_bboxes, det_labels, self.test_cfg, ori_shape, scale_factor=1.0, rescale=False) return segm_result def _onnx_get_fine_grained_point_feats(self, x, rois, rel_roi_points): """Export the process of sampling fine grained feats to onnx. Args: x (tuple[Tensor]): Feature maps of all scale level. rois (Tensor): shape (num_rois, 5). rel_roi_points (Tensor): A tensor of shape (num_rois, num_points, 2) that contains [0, 1] x [0, 1] normalized coordinates of the most uncertain points from the [mask_height, mask_width] grid. Returns: Tensor: The fine grained features for each points, has shape (num_rois, feats_channels, num_points). """ batch_size = x[0].shape[0] num_rois = rois.shape[0] fine_grained_feats = [] for idx in range(self.mask_roi_extractor.num_inputs): feats = x[idx] spatial_scale = 1. / float( self.mask_roi_extractor.featmap_strides[idx]) rel_img_points = rel_roi_point_to_rel_img_point( rois, rel_roi_points, feats, spatial_scale) channels = feats.shape[1] num_points = rel_img_points.shape[1] rel_img_points = rel_img_points.reshape(batch_size, -1, num_points, 2) point_feats = point_sample(feats, rel_img_points) point_feats = point_feats.transpose(1, 2).reshape( num_rois, channels, num_points) fine_grained_feats.append(point_feats) return torch.cat(fine_grained_feats, dim=1) def _mask_point_onnx_export(self, x, rois, label_pred, mask_pred): """Export mask refining process with point head to onnx. Args: x (tuple[Tensor]): Feature maps of all scale level. rois (Tensor): shape (num_rois, 5). label_pred (Tensor): The predication class for each rois. mask_pred (Tensor): The predication coarse masks of shape (num_rois, num_classes, small_size, small_size). Returns: Tensor: The refined masks of shape (num_rois, num_classes, large_size, large_size). """ refined_mask_pred = mask_pred.clone() for subdivision_step in range(self.test_cfg.subdivision_steps): refined_mask_pred = F.interpolate( refined_mask_pred, scale_factor=self.test_cfg.scale_factor, mode='bilinear', align_corners=False) # If `subdivision_num_points` is larger or equal to the # resolution of the next step, then we can skip this step num_rois, channels, mask_height, mask_width = \ refined_mask_pred.shape if (self.test_cfg.subdivision_num_points >= self.test_cfg.scale_factor**2 * mask_height * mask_width and subdivision_step < self.test_cfg.subdivision_steps - 1): continue point_indices, rel_roi_points = \ self.point_head.get_roi_rel_points_test( refined_mask_pred, label_pred, cfg=self.test_cfg) fine_grained_point_feats = self._onnx_get_fine_grained_point_feats( x, rois, rel_roi_points) coarse_point_feats = point_sample(mask_pred, rel_roi_points) mask_point_pred = self.point_head(fine_grained_point_feats, coarse_point_feats) point_indices = point_indices.unsqueeze(1).expand(-1, channels, -1) refined_mask_pred = refined_mask_pred.reshape( num_rois, channels, mask_height * mask_width) is_trt_backend = os.environ.get('ONNX_BACKEND') == 'MMCVTensorRT' # avoid ScatterElements op in ONNX for TensorRT if is_trt_backend: mask_shape = refined_mask_pred.shape point_shape = point_indices.shape inds_dim0 = torch.arange(point_shape[0]).reshape( point_shape[0], 1, 1).expand_as(point_indices) inds_dim1 = torch.arange(point_shape[1]).reshape( 1, point_shape[1], 1).expand_as(point_indices) inds_1d = inds_dim0.reshape( -1) * mask_shape[1] * mask_shape[2] + inds_dim1.reshape( -1) * mask_shape[2] + point_indices.reshape(-1) refined_mask_pred = refined_mask_pred.reshape(-1) refined_mask_pred[inds_1d] = mask_point_pred.reshape(-1) refined_mask_pred = refined_mask_pred.reshape(*mask_shape) else: refined_mask_pred = refined_mask_pred.scatter_( 2, point_indices, mask_point_pred) refined_mask_pred = refined_mask_pred.view(num_rois, channels, mask_height, mask_width) return refined_mask_pred def mask_onnx_export(self, x, img_metas, det_bboxes, det_labels, **kwargs): """Export mask branch to onnx which supports batch inference. Args: x (tuple[Tensor]): Feature maps of all scale level. img_metas (list[dict]): Image meta info. det_bboxes (Tensor): Bboxes and corresponding scores. has shape [N, num_bboxes, 5]. det_labels (Tensor): class labels of shape [N, num_bboxes]. Returns: Tensor: The segmentation results of shape [N, num_bboxes, image_height, image_width]. """ if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): raise RuntimeError('[ONNX Error] Can not record MaskHead ' 'as it has not been executed this time') batch_size = det_bboxes.size(0) # if det_bboxes is rescaled to the original image size, we need to # rescale it back to the testing scale to obtain RoIs. det_bboxes = det_bboxes[..., :4] batch_index = torch.arange( det_bboxes.size(0), device=det_bboxes.device).float().view( -1, 1, 1).expand(det_bboxes.size(0), det_bboxes.size(1), 1) mask_rois = torch.cat([batch_index, det_bboxes], dim=-1) mask_rois = mask_rois.view(-1, 5) mask_results = self._mask_forward(x, mask_rois) mask_pred = mask_results['mask_pred'] max_shape = img_metas[0]['img_shape_for_onnx'] num_det = det_bboxes.shape[1] det_bboxes = det_bboxes.reshape(-1, 4) det_labels = det_labels.reshape(-1) mask_pred = self._mask_point_onnx_export(x, mask_rois, det_labels, mask_pred) segm_results = self.mask_head.onnx_export(mask_pred, det_bboxes, det_labels, self.test_cfg, max_shape) segm_results = segm_results.reshape(batch_size, num_det, max_shape[0], max_shape[1]) return segm_results