# Copyright (c) OpenMMLab. All rights reserved. import warnings import torch.nn as nn from mmcv.runner import BaseModule, auto_fp16 from mmdet.models.backbones import ResNet from mmdet.models.builder import SHARED_HEADS from mmdet.models.utils import ResLayer as _ResLayer @SHARED_HEADS.register_module() class ResLayer(BaseModule): def __init__(self, depth, stage=3, stride=2, dilation=1, style='pytorch', norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, with_cp=False, dcn=None, pretrained=None, init_cfg=None): super(ResLayer, self).__init__(init_cfg) self.norm_eval = norm_eval self.norm_cfg = norm_cfg self.stage = stage self.fp16_enabled = False block, stage_blocks = ResNet.arch_settings[depth] stage_block = stage_blocks[stage] planes = 64 * 2**stage inplanes = 64 * 2**(stage - 1) * block.expansion res_layer = _ResLayer( block, inplanes, planes, stage_block, stride=stride, dilation=dilation, style=style, with_cp=with_cp, norm_cfg=self.norm_cfg, dcn=dcn) self.add_module(f'layer{stage + 1}', res_layer) assert not (init_cfg and pretrained), \ 'init_cfg and pretrained cannot be specified at the same time' if isinstance(pretrained, str): warnings.warn('DeprecationWarning: pretrained is a deprecated, ' 'please use "init_cfg" instead') self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) elif pretrained is None: if init_cfg is None: self.init_cfg = [ dict(type='Kaiming', layer='Conv2d'), dict( type='Constant', val=1, layer=['_BatchNorm', 'GroupNorm']) ] else: raise TypeError('pretrained must be a str or None') @auto_fp16() def forward(self, x): res_layer = getattr(self, f'layer{self.stage + 1}') out = res_layer(x) return out def train(self, mode=True): super(ResLayer, self).train(mode) if self.norm_eval: for m in self.modules(): if isinstance(m, nn.BatchNorm2d): m.eval()