# Copyright (c) OpenMMLab. All rights reserved. import warnings from pathlib import Path import mmcv import numpy as np import torch from mmcv.ops import RoIPool from mmcv.parallel import collate, scatter from mmcv.runner import load_checkpoint from mmdet.core import get_classes from mmdet.datasets import replace_ImageToTensor from mmdet.datasets.pipelines import Compose from mmdet.models import build_detector def init_detector(config, checkpoint=None, device='cuda:0', cfg_options=None): """Initialize a detector from config file. Args: config (str, :obj:`Path`, or :obj:`mmcv.Config`): Config file path, :obj:`Path`, or the config object. checkpoint (str, optional): Checkpoint path. If left as None, the model will not load any weights. cfg_options (dict): Options to override some settings in the used config. Returns: nn.Module: The constructed detector. """ if isinstance(config, (str, Path)): config = mmcv.Config.fromfile(config) elif not isinstance(config, mmcv.Config): raise TypeError('config must be a filename or Config object, ' f'but got {type(config)}') if cfg_options is not None: config.merge_from_dict(cfg_options) if 'pretrained' in config.model: config.model.pretrained = None elif (config.model.get('backbone', None) is not None and 'init_cfg' in config.model.backbone): config.model.backbone.init_cfg = None config.model.train_cfg = None model = build_detector(config.model, test_cfg=config.get('test_cfg')) if checkpoint is not None: checkpoint = load_checkpoint(model, checkpoint, map_location='cpu') if 'CLASSES' in checkpoint.get('meta', {}): model.CLASSES = checkpoint['meta']['CLASSES'] else: warnings.simplefilter('once') warnings.warn('Class names are not saved in the checkpoint\'s ' 'meta data, use COCO classes by default.') model.CLASSES = get_classes('coco') model.cfg = config # save the config in the model for convenience model.to(device) model.eval() if device == 'npu': from mmcv.device.npu import NPUDataParallel model = NPUDataParallel(model) model.cfg = config return model class LoadImage: """Deprecated. A simple pipeline to load image. """ def __call__(self, results): """Call function to load images into results. Args: results (dict): A result dict contains the file name of the image to be read. Returns: dict: ``results`` will be returned containing loaded image. """ warnings.simplefilter('once') warnings.warn('`LoadImage` is deprecated and will be removed in ' 'future releases. You may use `LoadImageFromWebcam` ' 'from `mmdet.datasets.pipelines.` instead.') if isinstance(results['img'], str): results['filename'] = results['img'] results['ori_filename'] = results['img'] else: results['filename'] = None results['ori_filename'] = None img = mmcv.imread(results['img']) results['img'] = img results['img_fields'] = ['img'] results['img_shape'] = img.shape results['ori_shape'] = img.shape return results def inference_detector(model, imgs): """Inference image(s) with the detector. Args: model (nn.Module): The loaded detector. imgs (str/ndarray or list[str/ndarray] or tuple[str/ndarray]): Either image files or loaded images. Returns: If imgs is a list or tuple, the same length list type results will be returned, otherwise return the detection results directly. """ ori_img = imgs if isinstance(imgs, (list, tuple)): is_batch = True else: imgs = [imgs] is_batch = False cfg = model.cfg device = next(model.parameters()).device # model device if isinstance(imgs[0], np.ndarray): cfg = cfg.copy() # set loading pipeline type cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam' cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline) test_pipeline = Compose(cfg.data.test.pipeline) datas = [] for img in imgs: # prepare data if isinstance(img, np.ndarray): # directly add img data = dict(img=img) else: # add information into dict data = dict(img_info=dict(filename=img), img_prefix=None) # build the data pipeline data = test_pipeline(data) datas.append(data) data = collate(datas, samples_per_gpu=len(imgs)) # just get the actual data from DataContainer data['img_metas'] = [img_metas.data[0] for img_metas in data['img_metas']] data['img'] = [img.data[0] for img in data['img']] if next(model.parameters()).is_cuda: # scatter to specified GPU data = scatter(data, [device])[0] else: for m in model.modules(): assert not isinstance( m, RoIPool ), 'CPU inference with RoIPool is not supported currently.' # forward the model with torch.no_grad(): results = model(return_loss=False, rescale=True, **data, ori_img=ori_img) if not is_batch: return results[0] else: return results async def async_inference_detector(model, imgs): """Async inference image(s) with the detector. Args: model (nn.Module): The loaded detector. img (str | ndarray): Either image files or loaded images. Returns: Awaitable detection results. """ if not isinstance(imgs, (list, tuple)): imgs = [imgs] cfg = model.cfg device = next(model.parameters()).device # model device if isinstance(imgs[0], np.ndarray): cfg = cfg.copy() # set loading pipeline type cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam' cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline) test_pipeline = Compose(cfg.data.test.pipeline) datas = [] for img in imgs: # prepare data if isinstance(img, np.ndarray): # directly add img data = dict(img=img) else: # add information into dict data = dict(img_info=dict(filename=img), img_prefix=None) # build the data pipeline data = test_pipeline(data) datas.append(data) data = collate(datas, samples_per_gpu=len(imgs)) # just get the actual data from DataContainer data['img_metas'] = [img_metas.data[0] for img_metas in data['img_metas']] data['img'] = [img.data[0] for img in data['img']] if next(model.parameters()).is_cuda: # scatter to specified GPU data = scatter(data, [device])[0] else: for m in model.modules(): assert not isinstance( m, RoIPool ), 'CPU inference with RoIPool is not supported currently.' # We don't restore `torch.is_grad_enabled()` value during concurrent # inference since execution can overlap torch.set_grad_enabled(False) results = await model.aforward_test(rescale=True, **data) return results def show_result_pyplot(model, img, result, score_thr=0.3, title='result', wait_time=0, palette=None, out_file=None): """Visualize the detection results on the image. Args: model (nn.Module): The loaded detector. img (str or np.ndarray): Image filename or loaded image. result (tuple[list] or list): The detection result, can be either (bbox, segm) or just bbox. score_thr (float): The threshold to visualize the bboxes and masks. title (str): Title of the pyplot figure. wait_time (float): Value of waitKey param. Default: 0. palette (str or tuple(int) or :obj:`Color`): Color. The tuple of color should be in BGR order. out_file (str or None): The path to write the image. Default: None. """ if hasattr(model, 'module'): model = model.module model.show_result( img, result, score_thr=score_thr, show=True, wait_time=wait_time, win_name=title, bbox_color=palette, text_color=(200, 200, 200), mask_color=palette, out_file=out_file)