# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import torch import torch.nn as nn from mmcv.cnn import Conv2d, Linear, MaxPool2d from mmcv.runner import BaseModule, force_fp32 from torch.nn.modules.utils import _pair from mmdet.models.builder import HEADS, build_loss @HEADS.register_module() class MaskIoUHead(BaseModule): """Mask IoU Head. This head predicts the IoU of predicted masks and corresponding gt masks. """ def __init__(self, num_convs=4, num_fcs=2, roi_feat_size=14, in_channels=256, conv_out_channels=256, fc_out_channels=1024, num_classes=80, loss_iou=dict(type='MSELoss', loss_weight=0.5), init_cfg=[ dict(type='Kaiming', override=dict(name='convs')), dict(type='Caffe2Xavier', override=dict(name='fcs')), dict( type='Normal', std=0.01, override=dict(name='fc_mask_iou')) ]): super(MaskIoUHead, self).__init__(init_cfg) self.in_channels = in_channels self.conv_out_channels = conv_out_channels self.fc_out_channels = fc_out_channels self.num_classes = num_classes self.fp16_enabled = False self.convs = nn.ModuleList() for i in range(num_convs): if i == 0: # concatenation of mask feature and mask prediction in_channels = self.in_channels + 1 else: in_channels = self.conv_out_channels stride = 2 if i == num_convs - 1 else 1 self.convs.append( Conv2d( in_channels, self.conv_out_channels, 3, stride=stride, padding=1)) roi_feat_size = _pair(roi_feat_size) pooled_area = (roi_feat_size[0] // 2) * (roi_feat_size[1] // 2) self.fcs = nn.ModuleList() for i in range(num_fcs): in_channels = ( self.conv_out_channels * pooled_area if i == 0 else self.fc_out_channels) self.fcs.append(Linear(in_channels, self.fc_out_channels)) self.fc_mask_iou = Linear(self.fc_out_channels, self.num_classes) self.relu = nn.ReLU() self.max_pool = MaxPool2d(2, 2) self.loss_iou = build_loss(loss_iou) def forward(self, mask_feat, mask_pred): mask_pred = mask_pred.sigmoid() mask_pred_pooled = self.max_pool(mask_pred.unsqueeze(1)) x = torch.cat((mask_feat, mask_pred_pooled), 1) for conv in self.convs: x = self.relu(conv(x)) x = x.flatten(1) for fc in self.fcs: x = self.relu(fc(x)) mask_iou = self.fc_mask_iou(x) return mask_iou @force_fp32(apply_to=('mask_iou_pred', )) def loss(self, mask_iou_pred, mask_iou_targets): pos_inds = mask_iou_targets > 0 if pos_inds.sum() > 0: loss_mask_iou = self.loss_iou(mask_iou_pred[pos_inds], mask_iou_targets[pos_inds]) else: loss_mask_iou = mask_iou_pred.sum() * 0 return dict(loss_mask_iou=loss_mask_iou) @force_fp32(apply_to=('mask_pred', )) def get_targets(self, sampling_results, gt_masks, mask_pred, mask_targets, rcnn_train_cfg): """Compute target of mask IoU. Mask IoU target is the IoU of the predicted mask (inside a bbox) and the gt mask of corresponding gt mask (the whole instance). The intersection area is computed inside the bbox, and the gt mask area is computed with two steps, firstly we compute the gt area inside the bbox, then divide it by the area ratio of gt area inside the bbox and the gt area of the whole instance. Args: sampling_results (list[:obj:`SamplingResult`]): sampling results. gt_masks (BitmapMask | PolygonMask): Gt masks (the whole instance) of each image, with the same shape of the input image. mask_pred (Tensor): Predicted masks of each positive proposal, shape (num_pos, h, w). mask_targets (Tensor): Gt mask of each positive proposal, binary map of the shape (num_pos, h, w). rcnn_train_cfg (dict): Training config for R-CNN part. Returns: Tensor: mask iou target (length == num positive). """ pos_proposals = [res.pos_bboxes for res in sampling_results] pos_assigned_gt_inds = [ res.pos_assigned_gt_inds for res in sampling_results ] # compute the area ratio of gt areas inside the proposals and # the whole instance area_ratios = map(self._get_area_ratio, pos_proposals, pos_assigned_gt_inds, gt_masks) area_ratios = torch.cat(list(area_ratios)) assert mask_targets.size(0) == area_ratios.size(0) mask_pred = (mask_pred > rcnn_train_cfg.mask_thr_binary).float() mask_pred_areas = mask_pred.sum((-1, -2)) # mask_pred and mask_targets are binary maps overlap_areas = (mask_pred * mask_targets).sum((-1, -2)) # compute the mask area of the whole instance gt_full_areas = mask_targets.sum((-1, -2)) / (area_ratios + 1e-7) mask_iou_targets = overlap_areas / ( mask_pred_areas + gt_full_areas - overlap_areas) return mask_iou_targets def _get_area_ratio(self, pos_proposals, pos_assigned_gt_inds, gt_masks): """Compute area ratio of the gt mask inside the proposal and the gt mask of the corresponding instance.""" num_pos = pos_proposals.size(0) if num_pos > 0: area_ratios = [] proposals_np = pos_proposals.cpu().numpy() pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy() # compute mask areas of gt instances (batch processing for speedup) gt_instance_mask_area = gt_masks.areas for i in range(num_pos): gt_mask = gt_masks[pos_assigned_gt_inds[i]] # crop the gt mask inside the proposal bbox = proposals_np[i, :].astype(np.int32) gt_mask_in_proposal = gt_mask.crop(bbox) ratio = gt_mask_in_proposal.areas[0] / ( gt_instance_mask_area[pos_assigned_gt_inds[i]] + 1e-7) area_ratios.append(ratio) area_ratios = torch.from_numpy(np.stack(area_ratios)).float().to( pos_proposals.device) else: area_ratios = pos_proposals.new_zeros((0, )) return area_ratios @force_fp32(apply_to=('mask_iou_pred', )) def get_mask_scores(self, mask_iou_pred, det_bboxes, det_labels): """Get the mask scores. mask_score = bbox_score * mask_iou """ inds = range(det_labels.size(0)) mask_scores = mask_iou_pred[inds, det_labels] * det_bboxes[inds, -1] mask_scores = mask_scores.cpu().numpy() det_labels = det_labels.cpu().numpy() return [mask_scores[det_labels == i] for i in range(self.num_classes)]