# Copyright (c) OpenMMLab. All rights reserved. import copy import torch.nn as nn from mmcv.cnn import ConvModule, Scale from mmdet.models.dense_heads.fcos_head import FCOSHead from ..builder import HEADS @HEADS.register_module() class NASFCOSHead(FCOSHead): """Anchor-free head used in `NASFCOS `_. It is quite similar with FCOS head, except for the searched structure of classification branch and bbox regression branch, where a structure of "dconv3x3, conv3x3, dconv3x3, conv1x1" is utilized instead. """ def __init__(self, *args, init_cfg=None, **kwargs): if init_cfg is None: init_cfg = [ dict(type='Caffe2Xavier', layer=['ConvModule', 'Conv2d']), dict( type='Normal', std=0.01, override=[ dict(name='conv_reg'), dict(name='conv_centerness'), dict( name='conv_cls', type='Normal', std=0.01, bias_prob=0.01) ]), ] super(NASFCOSHead, self).__init__(*args, init_cfg=init_cfg, **kwargs) def _init_layers(self): """Initialize layers of the head.""" dconv3x3_config = dict( type='DCNv2', kernel_size=3, use_bias=True, deform_groups=2, padding=1) conv3x3_config = dict(type='Conv', kernel_size=3, padding=1) conv1x1_config = dict(type='Conv', kernel_size=1) self.arch_config = [ dconv3x3_config, conv3x3_config, dconv3x3_config, conv1x1_config ] self.cls_convs = nn.ModuleList() self.reg_convs = nn.ModuleList() for i, op_ in enumerate(self.arch_config): op = copy.deepcopy(op_) chn = self.in_channels if i == 0 else self.feat_channels assert isinstance(op, dict) use_bias = op.pop('use_bias', False) padding = op.pop('padding', 0) kernel_size = op.pop('kernel_size') module = ConvModule( chn, self.feat_channels, kernel_size, stride=1, padding=padding, norm_cfg=self.norm_cfg, bias=use_bias, conv_cfg=op) self.cls_convs.append(copy.deepcopy(module)) self.reg_convs.append(copy.deepcopy(module)) self.conv_cls = nn.Conv2d( self.feat_channels, self.cls_out_channels, 3, padding=1) self.conv_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1) self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1) self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides])