# Copyright (c) OpenMMLab. All rights reserved. import numpy as np from ..builder import PIPELINES @PIPELINES.register_module() class InstaBoost: r"""Data augmentation method in `InstaBoost: Boosting Instance Segmentation Via Probability Map Guided Copy-Pasting `_. Refer to https://github.com/GothicAi/Instaboost for implementation details. Args: action_candidate (tuple): Action candidates. "normal", "horizontal", \ "vertical", "skip" are supported. Default: ('normal', \ 'horizontal', 'skip'). action_prob (tuple): Corresponding action probabilities. Should be \ the same length as action_candidate. Default: (1, 0, 0). scale (tuple): (min scale, max scale). Default: (0.8, 1.2). dx (int): The maximum x-axis shift will be (instance width) / dx. Default 15. dy (int): The maximum y-axis shift will be (instance height) / dy. Default 15. theta (tuple): (min rotation degree, max rotation degree). \ Default: (-1, 1). color_prob (float): Probability of images for color augmentation. Default 0.5. heatmap_flag (bool): Whether to use heatmap guided. Default False. aug_ratio (float): Probability of applying this transformation. \ Default 0.5. """ def __init__(self, action_candidate=('normal', 'horizontal', 'skip'), action_prob=(1, 0, 0), scale=(0.8, 1.2), dx=15, dy=15, theta=(-1, 1), color_prob=0.5, hflag=False, aug_ratio=0.5): try: import instaboostfast as instaboost except ImportError: raise ImportError( 'Please run "pip install instaboostfast" ' 'to install instaboostfast first for instaboost augmentation.') self.cfg = instaboost.InstaBoostConfig(action_candidate, action_prob, scale, dx, dy, theta, color_prob, hflag) self.aug_ratio = aug_ratio def _load_anns(self, results): labels = results['ann_info']['labels'] masks = results['ann_info']['masks'] bboxes = results['ann_info']['bboxes'] n = len(labels) anns = [] for i in range(n): label = labels[i] bbox = bboxes[i] mask = masks[i] x1, y1, x2, y2 = bbox # assert (x2 - x1) >= 1 and (y2 - y1) >= 1 bbox = [x1, y1, x2 - x1, y2 - y1] anns.append({ 'category_id': label, 'segmentation': mask, 'bbox': bbox }) return anns def _parse_anns(self, results, anns, img): gt_bboxes = [] gt_labels = [] gt_masks_ann = [] for ann in anns: x1, y1, w, h = ann['bbox'] # TODO: more essential bug need to be fixed in instaboost if w <= 0 or h <= 0: continue bbox = [x1, y1, x1 + w, y1 + h] gt_bboxes.append(bbox) gt_labels.append(ann['category_id']) gt_masks_ann.append(ann['segmentation']) gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels = np.array(gt_labels, dtype=np.int64) results['ann_info']['labels'] = gt_labels results['ann_info']['bboxes'] = gt_bboxes results['ann_info']['masks'] = gt_masks_ann results['img'] = img return results def __call__(self, results): img = results['img'] ori_type = img.dtype anns = self._load_anns(results) if np.random.choice([0, 1], p=[1 - self.aug_ratio, self.aug_ratio]): try: import instaboostfast as instaboost except ImportError: raise ImportError('Please run "pip install instaboostfast" ' 'to install instaboostfast first.') anns, img = instaboost.get_new_data( anns, img.astype(np.uint8), self.cfg, background=None) results = self._parse_anns(results, anns, img.astype(ori_type)) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(cfg={self.cfg}, aug_ratio={self.aug_ratio})' return repr_str