# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import xml.etree.ElementTree as ET import mmcv import numpy as np from PIL import Image from .builder import DATASETS from .custom import CustomDataset @DATASETS.register_module() class XMLDataset(CustomDataset): """XML dataset for detection. Args: min_size (int | float, optional): The minimum size of bounding boxes in the images. If the size of a bounding box is less than ``min_size``, it would be add to ignored field. img_subdir (str): Subdir where images are stored. Default: JPEGImages. ann_subdir (str): Subdir where annotations are. Default: Annotations. """ def __init__(self, min_size=None, img_subdir='JPEGImages', ann_subdir='Annotations', **kwargs): assert self.CLASSES or kwargs.get( 'classes', None), 'CLASSES in `XMLDataset` can not be None.' self.img_subdir = img_subdir self.ann_subdir = ann_subdir super(XMLDataset, self).__init__(**kwargs) self.cat2label = {cat: i for i, cat in enumerate(self.CLASSES)} self.min_size = min_size def load_annotations(self, ann_file): """Load annotation from XML style ann_file. Args: ann_file (str): Path of XML file. Returns: list[dict]: Annotation info from XML file. """ data_infos = [] img_ids = mmcv.list_from_file(ann_file) for img_id in img_ids: filename = osp.join(self.img_subdir, f'{img_id}.jpg') xml_path = osp.join(self.img_prefix, self.ann_subdir, f'{img_id}.xml') tree = ET.parse(xml_path) root = tree.getroot() size = root.find('size') if size is not None: width = int(size.find('width').text) height = int(size.find('height').text) else: img_path = osp.join(self.img_prefix, filename) img = Image.open(img_path) width, height = img.size data_infos.append( dict(id=img_id, filename=filename, width=width, height=height)) return data_infos def _filter_imgs(self, min_size=32): """Filter images too small or without annotation.""" valid_inds = [] for i, img_info in enumerate(self.data_infos): if min(img_info['width'], img_info['height']) < min_size: continue if self.filter_empty_gt: img_id = img_info['id'] xml_path = osp.join(self.img_prefix, self.ann_subdir, f'{img_id}.xml') tree = ET.parse(xml_path) root = tree.getroot() for obj in root.findall('object'): name = obj.find('name').text if name in self.CLASSES: valid_inds.append(i) break else: valid_inds.append(i) return valid_inds def get_ann_info(self, idx): """Get annotation from XML file by index. Args: idx (int): Index of data. Returns: dict: Annotation info of specified index. """ img_id = self.data_infos[idx]['id'] xml_path = osp.join(self.img_prefix, self.ann_subdir, f'{img_id}.xml') tree = ET.parse(xml_path) root = tree.getroot() bboxes = [] labels = [] bboxes_ignore = [] labels_ignore = [] for obj in root.findall('object'): name = obj.find('name').text if name not in self.CLASSES: continue label = self.cat2label[name] difficult = obj.find('difficult') difficult = 0 if difficult is None else int(difficult.text) bnd_box = obj.find('bndbox') # TODO: check whether it is necessary to use int # Coordinates may be float type bbox = [ int(float(bnd_box.find('xmin').text)), int(float(bnd_box.find('ymin').text)), int(float(bnd_box.find('xmax').text)), int(float(bnd_box.find('ymax').text)) ] ignore = False if self.min_size: assert not self.test_mode w = bbox[2] - bbox[0] h = bbox[3] - bbox[1] if w < self.min_size or h < self.min_size: ignore = True if difficult or ignore: bboxes_ignore.append(bbox) labels_ignore.append(label) else: bboxes.append(bbox) labels.append(label) if not bboxes: bboxes = np.zeros((0, 4)) labels = np.zeros((0, )) else: bboxes = np.array(bboxes, ndmin=2) - 1 labels = np.array(labels) if not bboxes_ignore: bboxes_ignore = np.zeros((0, 4)) labels_ignore = np.zeros((0, )) else: bboxes_ignore = np.array(bboxes_ignore, ndmin=2) - 1 labels_ignore = np.array(labels_ignore) ann = dict( bboxes=bboxes.astype(np.float32), labels=labels.astype(np.int64), bboxes_ignore=bboxes_ignore.astype(np.float32), labels_ignore=labels_ignore.astype(np.int64)) return ann def get_cat_ids(self, idx): """Get category ids in XML file by index. Args: idx (int): Index of data. Returns: list[int]: All categories in the image of specified index. """ cat_ids = [] img_id = self.data_infos[idx]['id'] xml_path = osp.join(self.img_prefix, self.ann_subdir, f'{img_id}.xml') tree = ET.parse(xml_path) root = tree.getroot() for obj in root.findall('object'): name = obj.find('name').text if name not in self.CLASSES: continue label = self.cat2label[name] cat_ids.append(label) return cat_ids