# Copyright (c) OpenMMLab. All rights reserved. import math import warnings import mmcv import torch import torch.nn as nn from mmdet.core import bbox_overlaps from ..builder import LOSSES from .utils import weighted_loss @mmcv.jit(derivate=True, coderize=True) @weighted_loss def iou_loss(pred, target, linear=False, mode='log', eps=1e-6): """IoU loss. Computing the IoU loss between a set of predicted bboxes and target bboxes. The loss is calculated as negative log of IoU. Args: pred (torch.Tensor): Predicted bboxes of format (x1, y1, x2, y2), shape (n, 4). target (torch.Tensor): Corresponding gt bboxes, shape (n, 4). linear (bool, optional): If True, use linear scale of loss instead of log scale. Default: False. mode (str): Loss scaling mode, including "linear", "square", and "log". Default: 'log' eps (float): Eps to avoid log(0). Return: torch.Tensor: Loss tensor. """ assert mode in ['linear', 'square', 'log'] if linear: mode = 'linear' warnings.warn('DeprecationWarning: Setting "linear=True" in ' 'iou_loss is deprecated, please use "mode=`linear`" ' 'instead.') ious = bbox_overlaps(pred, target, is_aligned=True).clamp(min=eps) if mode == 'linear': loss = 1 - ious elif mode == 'square': loss = 1 - ious**2 elif mode == 'log': loss = -ious.log() else: raise NotImplementedError return loss @mmcv.jit(derivate=True, coderize=True) @weighted_loss def bounded_iou_loss(pred, target, beta=0.2, eps=1e-3): """BIoULoss. This is an implementation of paper `Improving Object Localization with Fitness NMS and Bounded IoU Loss. `_. Args: pred (torch.Tensor): Predicted bboxes. target (torch.Tensor): Target bboxes. beta (float): beta parameter in smoothl1. eps (float): eps to avoid NaN. """ pred_ctrx = (pred[:, 0] + pred[:, 2]) * 0.5 pred_ctry = (pred[:, 1] + pred[:, 3]) * 0.5 pred_w = pred[:, 2] - pred[:, 0] pred_h = pred[:, 3] - pred[:, 1] with torch.no_grad(): target_ctrx = (target[:, 0] + target[:, 2]) * 0.5 target_ctry = (target[:, 1] + target[:, 3]) * 0.5 target_w = target[:, 2] - target[:, 0] target_h = target[:, 3] - target[:, 1] dx = target_ctrx - pred_ctrx dy = target_ctry - pred_ctry loss_dx = 1 - torch.max( (target_w - 2 * dx.abs()) / (target_w + 2 * dx.abs() + eps), torch.zeros_like(dx)) loss_dy = 1 - torch.max( (target_h - 2 * dy.abs()) / (target_h + 2 * dy.abs() + eps), torch.zeros_like(dy)) loss_dw = 1 - torch.min(target_w / (pred_w + eps), pred_w / (target_w + eps)) loss_dh = 1 - torch.min(target_h / (pred_h + eps), pred_h / (target_h + eps)) # view(..., -1) does not work for empty tensor loss_comb = torch.stack([loss_dx, loss_dy, loss_dw, loss_dh], dim=-1).flatten(1) loss = torch.where(loss_comb < beta, 0.5 * loss_comb * loss_comb / beta, loss_comb - 0.5 * beta) return loss @mmcv.jit(derivate=True, coderize=True) @weighted_loss def giou_loss(pred, target, eps=1e-7): r"""`Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression `_. Args: pred (torch.Tensor): Predicted bboxes of format (x1, y1, x2, y2), shape (n, 4). target (torch.Tensor): Corresponding gt bboxes, shape (n, 4). eps (float): Eps to avoid log(0). Return: Tensor: Loss tensor. """ gious = bbox_overlaps(pred, target, mode='giou', is_aligned=True, eps=eps) loss = 1 - gious return loss @mmcv.jit(derivate=True, coderize=True) @weighted_loss def diou_loss(pred, target, eps=1e-7): r"""`Implementation of Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression, https://arxiv.org/abs/1911.08287`_. Code is modified from https://github.com/Zzh-tju/DIoU. Args: pred (Tensor): Predicted bboxes of format (x1, y1, x2, y2), shape (n, 4). target (Tensor): Corresponding gt bboxes, shape (n, 4). eps (float): Eps to avoid log(0). Return: Tensor: Loss tensor. """ # overlap lt = torch.max(pred[:, :2], target[:, :2]) rb = torch.min(pred[:, 2:], target[:, 2:]) wh = (rb - lt).clamp(min=0) overlap = wh[:, 0] * wh[:, 1] # union ap = (pred[:, 2] - pred[:, 0]) * (pred[:, 3] - pred[:, 1]) ag = (target[:, 2] - target[:, 0]) * (target[:, 3] - target[:, 1]) union = ap + ag - overlap + eps # IoU ious = overlap / union # enclose area enclose_x1y1 = torch.min(pred[:, :2], target[:, :2]) enclose_x2y2 = torch.max(pred[:, 2:], target[:, 2:]) enclose_wh = (enclose_x2y2 - enclose_x1y1).clamp(min=0) cw = enclose_wh[:, 0] ch = enclose_wh[:, 1] c2 = cw**2 + ch**2 + eps b1_x1, b1_y1 = pred[:, 0], pred[:, 1] b1_x2, b1_y2 = pred[:, 2], pred[:, 3] b2_x1, b2_y1 = target[:, 0], target[:, 1] b2_x2, b2_y2 = target[:, 2], target[:, 3] left = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2))**2 / 4 right = ((b2_y1 + b2_y2) - (b1_y1 + b1_y2))**2 / 4 rho2 = left + right # DIoU dious = ious - rho2 / c2 loss = 1 - dious return loss @mmcv.jit(derivate=True, coderize=True) @weighted_loss def ciou_loss(pred, target, eps=1e-7): r"""`Implementation of paper `Enhancing Geometric Factors into Model Learning and Inference for Object Detection and Instance Segmentation `_. Code is modified from https://github.com/Zzh-tju/CIoU. Args: pred (Tensor): Predicted bboxes of format (x1, y1, x2, y2), shape (n, 4). target (Tensor): Corresponding gt bboxes, shape (n, 4). eps (float): Eps to avoid log(0). Return: Tensor: Loss tensor. """ # overlap lt = torch.max(pred[:, :2], target[:, :2]) rb = torch.min(pred[:, 2:], target[:, 2:]) wh = (rb - lt).clamp(min=0) overlap = wh[:, 0] * wh[:, 1] # union ap = (pred[:, 2] - pred[:, 0]) * (pred[:, 3] - pred[:, 1]) ag = (target[:, 2] - target[:, 0]) * (target[:, 3] - target[:, 1]) union = ap + ag - overlap + eps # IoU ious = overlap / union # enclose area enclose_x1y1 = torch.min(pred[:, :2], target[:, :2]) enclose_x2y2 = torch.max(pred[:, 2:], target[:, 2:]) enclose_wh = (enclose_x2y2 - enclose_x1y1).clamp(min=0) cw = enclose_wh[:, 0] ch = enclose_wh[:, 1] c2 = cw**2 + ch**2 + eps b1_x1, b1_y1 = pred[:, 0], pred[:, 1] b1_x2, b1_y2 = pred[:, 2], pred[:, 3] b2_x1, b2_y1 = target[:, 0], target[:, 1] b2_x2, b2_y2 = target[:, 2], target[:, 3] w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps left = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2))**2 / 4 right = ((b2_y1 + b2_y2) - (b1_y1 + b1_y2))**2 / 4 rho2 = left + right factor = 4 / math.pi**2 v = factor * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) with torch.no_grad(): alpha = (ious > 0.5).float() * v / (1 - ious + v) # CIoU cious = ious - (rho2 / c2 + alpha * v) loss = 1 - cious.clamp(min=-1.0, max=1.0) return loss @LOSSES.register_module() class IoULoss(nn.Module): """IoULoss. Computing the IoU loss between a set of predicted bboxes and target bboxes. Args: linear (bool): If True, use linear scale of loss else determined by mode. Default: False. eps (float): Eps to avoid log(0). reduction (str): Options are "none", "mean" and "sum". loss_weight (float): Weight of loss. mode (str): Loss scaling mode, including "linear", "square", and "log". Default: 'log' """ def __init__(self, linear=False, eps=1e-6, reduction='mean', loss_weight=1.0, mode='log'): super(IoULoss, self).__init__() assert mode in ['linear', 'square', 'log'] if linear: mode = 'linear' warnings.warn('DeprecationWarning: Setting "linear=True" in ' 'IOULoss is deprecated, please use "mode=`linear`" ' 'instead.') self.mode = mode self.linear = linear self.eps = eps self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None, **kwargs): """Forward function. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. weight (torch.Tensor, optional): The weight of loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Defaults to None. Options are "none", "mean" and "sum". """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) if (weight is not None) and (not torch.any(weight > 0)) and ( reduction != 'none'): if pred.dim() == weight.dim() + 1: weight = weight.unsqueeze(1) return (pred * weight).sum() # 0 if weight is not None and weight.dim() > 1: # TODO: remove this in the future # reduce the weight of shape (n, 4) to (n,) to match the # iou_loss of shape (n,) assert weight.shape == pred.shape weight = weight.mean(-1) loss = self.loss_weight * iou_loss( pred, target, weight, mode=self.mode, eps=self.eps, reduction=reduction, avg_factor=avg_factor, **kwargs) return loss @LOSSES.register_module() class BoundedIoULoss(nn.Module): def __init__(self, beta=0.2, eps=1e-3, reduction='mean', loss_weight=1.0): super(BoundedIoULoss, self).__init__() self.beta = beta self.eps = eps self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None, **kwargs): if weight is not None and not torch.any(weight > 0): if pred.dim() == weight.dim() + 1: weight = weight.unsqueeze(1) return (pred * weight).sum() # 0 assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss = self.loss_weight * bounded_iou_loss( pred, target, weight, beta=self.beta, eps=self.eps, reduction=reduction, avg_factor=avg_factor, **kwargs) return loss @LOSSES.register_module() class GIoULoss(nn.Module): def __init__(self, eps=1e-6, reduction='mean', loss_weight=1.0): super(GIoULoss, self).__init__() self.eps = eps self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None, **kwargs): if weight is not None and not torch.any(weight > 0): if pred.dim() == weight.dim() + 1: weight = weight.unsqueeze(1) return (pred * weight).sum() # 0 assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) if weight is not None and weight.dim() > 1: # TODO: remove this in the future # reduce the weight of shape (n, 4) to (n,) to match the # giou_loss of shape (n,) assert weight.shape == pred.shape weight = weight.mean(-1) loss = self.loss_weight * giou_loss( pred, target, weight, eps=self.eps, reduction=reduction, avg_factor=avg_factor, **kwargs) return loss @LOSSES.register_module() class DIoULoss(nn.Module): def __init__(self, eps=1e-6, reduction='mean', loss_weight=1.0): super(DIoULoss, self).__init__() self.eps = eps self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None, **kwargs): if weight is not None and not torch.any(weight > 0): if pred.dim() == weight.dim() + 1: weight = weight.unsqueeze(1) return (pred * weight).sum() # 0 assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) if weight is not None and weight.dim() > 1: # TODO: remove this in the future # reduce the weight of shape (n, 4) to (n,) to match the # giou_loss of shape (n,) assert weight.shape == pred.shape weight = weight.mean(-1) loss = self.loss_weight * diou_loss( pred, target, weight, eps=self.eps, reduction=reduction, avg_factor=avg_factor, **kwargs) return loss @LOSSES.register_module() class CIoULoss(nn.Module): def __init__(self, eps=1e-6, reduction='mean', loss_weight=1.0): super(CIoULoss, self).__init__() self.eps = eps self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None, **kwargs): if weight is not None and not torch.any(weight > 0): if pred.dim() == weight.dim() + 1: weight = weight.unsqueeze(1) return (pred * weight).sum() # 0 assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) if weight is not None and weight.dim() > 1: # TODO: remove this in the future # reduce the weight of shape (n, 4) to (n,) to match the # giou_loss of shape (n,) assert weight.shape == pred.shape weight = weight.mean(-1) loss = self.loss_weight * ciou_loss( pred, target, weight, eps=self.eps, reduction=reduction, avg_factor=avg_factor, **kwargs) return loss