# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch.nn as nn import torch.nn.functional as F from ..builder import LOSSES from .utils import weighted_loss @mmcv.jit(derivate=True, coderize=True) @weighted_loss def knowledge_distillation_kl_div_loss(pred, soft_label, T, detach_target=True): r"""Loss function for knowledge distilling using KL divergence. Args: pred (Tensor): Predicted logits with shape (N, n + 1). soft_label (Tensor): Target logits with shape (N, N + 1). T (int): Temperature for distillation. detach_target (bool): Remove soft_label from automatic differentiation Returns: torch.Tensor: Loss tensor with shape (N,). """ assert pred.size() == soft_label.size() target = F.softmax(soft_label / T, dim=1) if detach_target: target = target.detach() kd_loss = F.kl_div( F.log_softmax(pred / T, dim=1), target, reduction='none').mean(1) * ( T * T) return kd_loss @LOSSES.register_module() class KnowledgeDistillationKLDivLoss(nn.Module): """Loss function for knowledge distilling using KL divergence. Args: reduction (str): Options are `'none'`, `'mean'` and `'sum'`. loss_weight (float): Loss weight of current loss. T (int): Temperature for distillation. """ def __init__(self, reduction='mean', loss_weight=1.0, T=10): super(KnowledgeDistillationKLDivLoss, self).__init__() assert T >= 1 self.reduction = reduction self.loss_weight = loss_weight self.T = T def forward(self, pred, soft_label, weight=None, avg_factor=None, reduction_override=None): """Forward function. Args: pred (Tensor): Predicted logits with shape (N, n + 1). soft_label (Tensor): Target logits with shape (N, N + 1). weight (torch.Tensor, optional): The weight of loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Defaults to None. """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss_kd = self.loss_weight * knowledge_distillation_kl_div_loss( pred, soft_label, weight, reduction=reduction, avg_factor=avg_factor, T=self.T) return loss_kd