# Copyright (c) OpenMMLab. All rights reserved. import math import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as cp from mmcv.cnn import build_conv_layer, build_norm_layer from mmcv.runner import BaseModule from ..builder import BACKBONES from ..utils import ResLayer from .resnet import Bottleneck as _Bottleneck from .resnet import ResNetV1d class RSoftmax(nn.Module): """Radix Softmax module in ``SplitAttentionConv2d``. Args: radix (int): Radix of input. groups (int): Groups of input. """ def __init__(self, radix, groups): super().__init__() self.radix = radix self.groups = groups def forward(self, x): batch = x.size(0) if self.radix > 1: x = x.view(batch, self.groups, self.radix, -1).transpose(1, 2) x = F.softmax(x, dim=1) x = x.reshape(batch, -1) else: x = torch.sigmoid(x) return x class SplitAttentionConv2d(BaseModule): """Split-Attention Conv2d in ResNeSt. Args: in_channels (int): Number of channels in the input feature map. channels (int): Number of intermediate channels. kernel_size (int | tuple[int]): Size of the convolution kernel. stride (int | tuple[int]): Stride of the convolution. padding (int | tuple[int]): Zero-padding added to both sides of dilation (int | tuple[int]): Spacing between kernel elements. groups (int): Number of blocked connections from input channels to output channels. groups (int): Same as nn.Conv2d. radix (int): Radix of SpltAtConv2d. Default: 2 reduction_factor (int): Reduction factor of inter_channels. Default: 4. conv_cfg (dict): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: None. dcn (dict): Config dict for DCN. Default: None. init_cfg (dict or list[dict], optional): Initialization config dict. Default: None """ def __init__(self, in_channels, channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, radix=2, reduction_factor=4, conv_cfg=None, norm_cfg=dict(type='BN'), dcn=None, init_cfg=None): super(SplitAttentionConv2d, self).__init__(init_cfg) inter_channels = max(in_channels * radix // reduction_factor, 32) self.radix = radix self.groups = groups self.channels = channels self.with_dcn = dcn is not None self.dcn = dcn fallback_on_stride = False if self.with_dcn: fallback_on_stride = self.dcn.pop('fallback_on_stride', False) if self.with_dcn and not fallback_on_stride: assert conv_cfg is None, 'conv_cfg must be None for DCN' conv_cfg = dcn self.conv = build_conv_layer( conv_cfg, in_channels, channels * radix, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups * radix, bias=False) # To be consistent with original implementation, starting from 0 self.norm0_name, norm0 = build_norm_layer( norm_cfg, channels * radix, postfix=0) self.add_module(self.norm0_name, norm0) self.relu = nn.ReLU(inplace=True) self.fc1 = build_conv_layer( None, channels, inter_channels, 1, groups=self.groups) self.norm1_name, norm1 = build_norm_layer( norm_cfg, inter_channels, postfix=1) self.add_module(self.norm1_name, norm1) self.fc2 = build_conv_layer( None, inter_channels, channels * radix, 1, groups=self.groups) self.rsoftmax = RSoftmax(radix, groups) @property def norm0(self): """nn.Module: the normalization layer named "norm0" """ return getattr(self, self.norm0_name) @property def norm1(self): """nn.Module: the normalization layer named "norm1" """ return getattr(self, self.norm1_name) def forward(self, x): x = self.conv(x) x = self.norm0(x) x = self.relu(x) batch, rchannel = x.shape[:2] batch = x.size(0) if self.radix > 1: splits = x.view(batch, self.radix, -1, *x.shape[2:]) gap = splits.sum(dim=1) else: gap = x gap = F.adaptive_avg_pool2d(gap, 1) gap = self.fc1(gap) gap = self.norm1(gap) gap = self.relu(gap) atten = self.fc2(gap) atten = self.rsoftmax(atten).view(batch, -1, 1, 1) if self.radix > 1: attens = atten.view(batch, self.radix, -1, *atten.shape[2:]) out = torch.sum(attens * splits, dim=1) else: out = atten * x return out.contiguous() class Bottleneck(_Bottleneck): """Bottleneck block for ResNeSt. Args: inplane (int): Input planes of this block. planes (int): Middle planes of this block. groups (int): Groups of conv2. base_width (int): Base of width in terms of base channels. Default: 4. base_channels (int): Base of channels for calculating width. Default: 64. radix (int): Radix of SpltAtConv2d. Default: 2 reduction_factor (int): Reduction factor of inter_channels in SplitAttentionConv2d. Default: 4. avg_down_stride (bool): Whether to use average pool for stride in Bottleneck. Default: True. kwargs (dict): Key word arguments for base class. """ expansion = 4 def __init__(self, inplanes, planes, groups=1, base_width=4, base_channels=64, radix=2, reduction_factor=4, avg_down_stride=True, **kwargs): """Bottleneck block for ResNeSt.""" super(Bottleneck, self).__init__(inplanes, planes, **kwargs) if groups == 1: width = self.planes else: width = math.floor(self.planes * (base_width / base_channels)) * groups self.avg_down_stride = avg_down_stride and self.conv2_stride > 1 self.norm1_name, norm1 = build_norm_layer( self.norm_cfg, width, postfix=1) self.norm3_name, norm3 = build_norm_layer( self.norm_cfg, self.planes * self.expansion, postfix=3) self.conv1 = build_conv_layer( self.conv_cfg, self.inplanes, width, kernel_size=1, stride=self.conv1_stride, bias=False) self.add_module(self.norm1_name, norm1) self.with_modulated_dcn = False self.conv2 = SplitAttentionConv2d( width, width, kernel_size=3, stride=1 if self.avg_down_stride else self.conv2_stride, padding=self.dilation, dilation=self.dilation, groups=groups, radix=radix, reduction_factor=reduction_factor, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, dcn=self.dcn) delattr(self, self.norm2_name) if self.avg_down_stride: self.avd_layer = nn.AvgPool2d(3, self.conv2_stride, padding=1) self.conv3 = build_conv_layer( self.conv_cfg, width, self.planes * self.expansion, kernel_size=1, bias=False) self.add_module(self.norm3_name, norm3) def forward(self, x): def _inner_forward(x): identity = x out = self.conv1(x) out = self.norm1(out) out = self.relu(out) if self.with_plugins: out = self.forward_plugin(out, self.after_conv1_plugin_names) out = self.conv2(out) if self.avg_down_stride: out = self.avd_layer(out) if self.with_plugins: out = self.forward_plugin(out, self.after_conv2_plugin_names) out = self.conv3(out) out = self.norm3(out) if self.with_plugins: out = self.forward_plugin(out, self.after_conv3_plugin_names) if self.downsample is not None: identity = self.downsample(x) out += identity return out if self.with_cp and x.requires_grad: out = cp.checkpoint(_inner_forward, x) else: out = _inner_forward(x) out = self.relu(out) return out @BACKBONES.register_module() class ResNeSt(ResNetV1d): """ResNeSt backbone. Args: groups (int): Number of groups of Bottleneck. Default: 1 base_width (int): Base width of Bottleneck. Default: 4 radix (int): Radix of SplitAttentionConv2d. Default: 2 reduction_factor (int): Reduction factor of inter_channels in SplitAttentionConv2d. Default: 4. avg_down_stride (bool): Whether to use average pool for stride in Bottleneck. Default: True. kwargs (dict): Keyword arguments for ResNet. """ arch_settings = { 50: (Bottleneck, (3, 4, 6, 3)), 101: (Bottleneck, (3, 4, 23, 3)), 152: (Bottleneck, (3, 8, 36, 3)), 200: (Bottleneck, (3, 24, 36, 3)) } def __init__(self, groups=1, base_width=4, radix=2, reduction_factor=4, avg_down_stride=True, **kwargs): self.groups = groups self.base_width = base_width self.radix = radix self.reduction_factor = reduction_factor self.avg_down_stride = avg_down_stride super(ResNeSt, self).__init__(**kwargs) def make_res_layer(self, **kwargs): """Pack all blocks in a stage into a ``ResLayer``.""" return ResLayer( groups=self.groups, base_width=self.base_width, base_channels=self.base_channels, radix=self.radix, reduction_factor=self.reduction_factor, avg_down_stride=self.avg_down_stride, **kwargs)