# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import torch from mmdet.core import bbox2roi from mmdet.models.losses import SmoothL1Loss from ..builder import HEADS from .standard_roi_head import StandardRoIHead EPS = 1e-15 @HEADS.register_module() class DynamicRoIHead(StandardRoIHead): """RoI head for `Dynamic R-CNN `_.""" def __init__(self, **kwargs): super(DynamicRoIHead, self).__init__(**kwargs) assert isinstance(self.bbox_head.loss_bbox, SmoothL1Loss) # the IoU history of the past `update_iter_interval` iterations self.iou_history = [] # the beta history of the past `update_iter_interval` iterations self.beta_history = [] def forward_train(self, x, img_metas, proposal_list, gt_bboxes, gt_labels, gt_bboxes_ignore=None, gt_masks=None): """Forward function for training. Args: x (list[Tensor]): list of multi-level img features. img_metas (list[dict]): list of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmdet/datasets/pipelines/formatting.py:Collect`. proposals (list[Tensors]): list of region proposals. gt_bboxes (list[Tensor]): each item are the truth boxes for each image in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. gt_masks (None | Tensor) : true segmentation masks for each box used if the architecture supports a segmentation task. Returns: dict[str, Tensor]: a dictionary of loss components """ # assign gts and sample proposals if self.with_bbox or self.with_mask: num_imgs = len(img_metas) if gt_bboxes_ignore is None: gt_bboxes_ignore = [None for _ in range(num_imgs)] sampling_results = [] cur_iou = [] for i in range(num_imgs): assign_result = self.bbox_assigner.assign( proposal_list[i], gt_bboxes[i], gt_bboxes_ignore[i], gt_labels[i]) sampling_result = self.bbox_sampler.sample( assign_result, proposal_list[i], gt_bboxes[i], gt_labels[i], feats=[lvl_feat[i][None] for lvl_feat in x]) # record the `iou_topk`-th largest IoU in an image iou_topk = min(self.train_cfg.dynamic_rcnn.iou_topk, len(assign_result.max_overlaps)) ious, _ = torch.topk(assign_result.max_overlaps, iou_topk) cur_iou.append(ious[-1].item()) sampling_results.append(sampling_result) # average the current IoUs over images cur_iou = np.mean(cur_iou) self.iou_history.append(cur_iou) losses = dict() # bbox head forward and loss if self.with_bbox: bbox_results = self._bbox_forward_train(x, sampling_results, gt_bboxes, gt_labels, img_metas) losses.update(bbox_results['loss_bbox']) # mask head forward and loss if self.with_mask: mask_results = self._mask_forward_train(x, sampling_results, bbox_results['bbox_feats'], gt_masks, img_metas) losses.update(mask_results['loss_mask']) # update IoU threshold and SmoothL1 beta update_iter_interval = self.train_cfg.dynamic_rcnn.update_iter_interval if len(self.iou_history) % update_iter_interval == 0: new_iou_thr, new_beta = self.update_hyperparameters() return losses def _bbox_forward_train(self, x, sampling_results, gt_bboxes, gt_labels, img_metas): num_imgs = len(img_metas) rois = bbox2roi([res.bboxes for res in sampling_results]) bbox_results = self._bbox_forward(x, rois) bbox_targets = self.bbox_head.get_targets(sampling_results, gt_bboxes, gt_labels, self.train_cfg) # record the `beta_topk`-th smallest target # `bbox_targets[2]` and `bbox_targets[3]` stand for bbox_targets # and bbox_weights, respectively pos_inds = bbox_targets[3][:, 0].nonzero().squeeze(1) num_pos = len(pos_inds) cur_target = bbox_targets[2][pos_inds, :2].abs().mean(dim=1) beta_topk = min(self.train_cfg.dynamic_rcnn.beta_topk * num_imgs, num_pos) cur_target = torch.kthvalue(cur_target, beta_topk)[0].item() self.beta_history.append(cur_target) loss_bbox = self.bbox_head.loss(bbox_results['cls_score'], bbox_results['bbox_pred'], rois, *bbox_targets) bbox_results.update(loss_bbox=loss_bbox) return bbox_results def update_hyperparameters(self): """Update hyperparameters like IoU thresholds for assigner and beta for SmoothL1 loss based on the training statistics. Returns: tuple[float]: the updated ``iou_thr`` and ``beta``. """ new_iou_thr = max(self.train_cfg.dynamic_rcnn.initial_iou, np.mean(self.iou_history)) self.iou_history = [] self.bbox_assigner.pos_iou_thr = new_iou_thr self.bbox_assigner.neg_iou_thr = new_iou_thr self.bbox_assigner.min_pos_iou = new_iou_thr if (np.median(self.beta_history) < EPS): # avoid 0 or too small value for new_beta new_beta = self.bbox_head.loss_bbox.beta else: new_beta = min(self.train_cfg.dynamic_rcnn.initial_beta, np.median(self.beta_history)) self.beta_history = [] self.bbox_head.loss_bbox.beta = new_beta return new_iou_thr, new_beta