# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.core import bbox2result, bbox2roi, build_assigner, build_sampler from ..builder import HEADS, build_head, build_roi_extractor from .base_roi_head import BaseRoIHead from .test_mixins import BBoxTestMixin, MaskTestMixin @HEADS.register_module() class StandardRoIHead(BaseRoIHead, BBoxTestMixin, MaskTestMixin): """Simplest base roi head including one bbox head and one mask head.""" def init_assigner_sampler(self): """Initialize assigner and sampler.""" self.bbox_assigner = None self.bbox_sampler = None if self.train_cfg: self.bbox_assigner = build_assigner(self.train_cfg.assigner) self.bbox_sampler = build_sampler( self.train_cfg.sampler, context=self) def init_bbox_head(self, bbox_roi_extractor, bbox_head): """Initialize ``bbox_head``""" self.bbox_roi_extractor = build_roi_extractor(bbox_roi_extractor) self.bbox_head = build_head(bbox_head) def init_mask_head(self, mask_roi_extractor, mask_head): """Initialize ``mask_head``""" if mask_roi_extractor is not None: self.mask_roi_extractor = build_roi_extractor(mask_roi_extractor) self.share_roi_extractor = False else: self.share_roi_extractor = True self.mask_roi_extractor = self.bbox_roi_extractor self.mask_head = build_head(mask_head) def forward_dummy(self, x, proposals): """Dummy forward function.""" # bbox head outs = () rois = bbox2roi([proposals]) if self.with_bbox: bbox_results = self._bbox_forward(x, rois) outs = outs + (bbox_results['cls_score'], bbox_results['bbox_pred']) # mask head if self.with_mask: mask_rois = rois[:100] mask_results = self._mask_forward(x, mask_rois) outs = outs + (mask_results['mask_pred'], ) return outs def forward_train(self, x, img_metas, proposal_list, gt_bboxes, gt_labels, gt_bboxes_ignore=None, gt_masks=None, **kwargs): """ Args: x (list[Tensor]): list of multi-level img features. img_metas (list[dict]): list of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmdet/datasets/pipelines/formatting.py:Collect`. proposals (list[Tensors]): list of region proposals. gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. gt_masks (None | Tensor) : true segmentation masks for each box used if the architecture supports a segmentation task. Returns: dict[str, Tensor]: a dictionary of loss components """ # assign gts and sample proposals if self.with_bbox or self.with_mask: num_imgs = len(img_metas) if gt_bboxes_ignore is None: gt_bboxes_ignore = [None for _ in range(num_imgs)] sampling_results = [] for i in range(num_imgs): assign_result = self.bbox_assigner.assign( proposal_list[i], gt_bboxes[i], gt_bboxes_ignore[i], gt_labels[i]) sampling_result = self.bbox_sampler.sample( assign_result, proposal_list[i], gt_bboxes[i], gt_labels[i], feats=[lvl_feat[i][None] for lvl_feat in x]) sampling_results.append(sampling_result) losses = dict() # bbox head forward and loss if self.with_bbox: bbox_results = self._bbox_forward_train(x, sampling_results, gt_bboxes, gt_labels, img_metas) losses.update(bbox_results['loss_bbox']) # mask head forward and loss if self.with_mask: mask_results = self._mask_forward_train(x, sampling_results, bbox_results['bbox_feats'], gt_masks, img_metas) losses.update(mask_results['loss_mask']) return losses def _bbox_forward(self, x, rois): """Box head forward function used in both training and testing.""" # TODO: a more flexible way to decide which feature maps to use bbox_feats = self.bbox_roi_extractor( x[:self.bbox_roi_extractor.num_inputs], rois) if self.with_shared_head: bbox_feats = self.shared_head(bbox_feats) cls_score, bbox_pred = self.bbox_head(bbox_feats) bbox_results = dict( cls_score=cls_score, bbox_pred=bbox_pred, bbox_feats=bbox_feats) return bbox_results def _bbox_forward_train(self, x, sampling_results, gt_bboxes, gt_labels, img_metas): """Run forward function and calculate loss for box head in training.""" rois = bbox2roi([res.bboxes for res in sampling_results]) bbox_results = self._bbox_forward(x, rois) bbox_targets = self.bbox_head.get_targets(sampling_results, gt_bboxes, gt_labels, self.train_cfg) loss_bbox = self.bbox_head.loss(bbox_results['cls_score'], bbox_results['bbox_pred'], rois, *bbox_targets) bbox_results.update(loss_bbox=loss_bbox) return bbox_results def _mask_forward_train(self, x, sampling_results, bbox_feats, gt_masks, img_metas): """Run forward function and calculate loss for mask head in training.""" if not self.share_roi_extractor: pos_rois = bbox2roi([res.pos_bboxes for res in sampling_results]) mask_results = self._mask_forward(x, pos_rois) else: pos_inds = [] device = bbox_feats.device for res in sampling_results: pos_inds.append( torch.ones( res.pos_bboxes.shape[0], device=device, dtype=torch.uint8)) pos_inds.append( torch.zeros( res.neg_bboxes.shape[0], device=device, dtype=torch.uint8)) pos_inds = torch.cat(pos_inds) mask_results = self._mask_forward( x, pos_inds=pos_inds, bbox_feats=bbox_feats) mask_targets = self.mask_head.get_targets(sampling_results, gt_masks, self.train_cfg) pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) loss_mask = self.mask_head.loss(mask_results['mask_pred'], mask_targets, pos_labels) mask_results.update(loss_mask=loss_mask, mask_targets=mask_targets) return mask_results def _mask_forward(self, x, rois=None, pos_inds=None, bbox_feats=None): """Mask head forward function used in both training and testing.""" assert ((rois is not None) ^ (pos_inds is not None and bbox_feats is not None)) if rois is not None: mask_feats = self.mask_roi_extractor( x[:self.mask_roi_extractor.num_inputs], rois) if self.with_shared_head: mask_feats = self.shared_head(mask_feats) else: assert bbox_feats is not None mask_feats = bbox_feats[pos_inds] mask_pred = self.mask_head(mask_feats) mask_results = dict(mask_pred=mask_pred, mask_feats=mask_feats) return mask_results async def async_simple_test(self, x, proposal_list, img_metas, proposals=None, rescale=False): """Async test without augmentation.""" assert self.with_bbox, 'Bbox head must be implemented.' det_bboxes, det_labels = await self.async_test_bboxes( x, img_metas, proposal_list, self.test_cfg, rescale=rescale) bbox_results = bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes) if not self.with_mask: return bbox_results else: segm_results = await self.async_test_mask( x, img_metas, det_bboxes, det_labels, rescale=rescale, mask_test_cfg=self.test_cfg.get('mask')) return bbox_results, segm_results def simple_test(self, x, proposal_list, img_metas, proposals=None, rescale=False): """Test without augmentation. Args: x (tuple[Tensor]): Features from upstream network. Each has shape (batch_size, c, h, w). proposal_list (list(Tensor)): Proposals from rpn head. Each has shape (num_proposals, 5), last dimension 5 represent (x1, y1, x2, y2, score). img_metas (list[dict]): Meta information of images. rescale (bool): Whether to rescale the results to the original image. Default: True. Returns: list[list[np.ndarray]] or list[tuple]: When no mask branch, it is bbox results of each image and classes with type `list[list[np.ndarray]]`. The outer list corresponds to each image. The inner list corresponds to each class. When the model has mask branch, it contains bbox results and mask results. The outer list corresponds to each image, and first element of tuple is bbox results, second element is mask results. """ assert self.with_bbox, 'Bbox head must be implemented.' det_bboxes, det_labels = self.simple_test_bboxes( x, img_metas, proposal_list, self.test_cfg, rescale=rescale) bbox_results = [ bbox2result(det_bboxes[i], det_labels[i], self.bbox_head.num_classes) for i in range(len(det_bboxes)) ] if not self.with_mask: return bbox_results else: segm_results = self.simple_test_mask( x, img_metas, det_bboxes, det_labels, rescale=rescale) return list(zip(bbox_results, segm_results)) def aug_test(self, x, proposal_list, img_metas, rescale=False): """Test with augmentations. If rescale is False, then returned bboxes and masks will fit the scale of imgs[0]. """ det_bboxes, det_labels = self.aug_test_bboxes(x, img_metas, proposal_list, self.test_cfg) if rescale: _det_bboxes = det_bboxes else: _det_bboxes = det_bboxes.clone() _det_bboxes[:, :4] *= det_bboxes.new_tensor( img_metas[0][0]['scale_factor']) bbox_results = bbox2result(_det_bboxes, det_labels, self.bbox_head.num_classes) # det_bboxes always keep the original scale if self.with_mask: segm_results = self.aug_test_mask(x, img_metas, det_bboxes, det_labels) return [(bbox_results, segm_results)] else: return [bbox_results] def onnx_export(self, x, proposals, img_metas, rescale=False): """Test without augmentation.""" assert self.with_bbox, 'Bbox head must be implemented.' det_bboxes, det_labels = self.bbox_onnx_export( x, img_metas, proposals, self.test_cfg, rescale=rescale) if not self.with_mask: return det_bboxes, det_labels else: segm_results = self.mask_onnx_export( x, img_metas, det_bboxes, det_labels, rescale=rescale) return det_bboxes, det_labels, segm_results def mask_onnx_export(self, x, img_metas, det_bboxes, det_labels, **kwargs): """Export mask branch to onnx which supports batch inference. Args: x (tuple[Tensor]): Feature maps of all scale level. img_metas (list[dict]): Image meta info. det_bboxes (Tensor): Bboxes and corresponding scores. has shape [N, num_bboxes, 5]. det_labels (Tensor): class labels of shape [N, num_bboxes]. Returns: Tensor: The segmentation results of shape [N, num_bboxes, image_height, image_width]. """ # image shapes of images in the batch if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): raise RuntimeError('[ONNX Error] Can not record MaskHead ' 'as it has not been executed this time') batch_size = det_bboxes.size(0) # if det_bboxes is rescaled to the original image size, we need to # rescale it back to the testing scale to obtain RoIs. det_bboxes = det_bboxes[..., :4] batch_index = torch.arange( det_bboxes.size(0), device=det_bboxes.device).float().view( -1, 1, 1).expand(det_bboxes.size(0), det_bboxes.size(1), 1) mask_rois = torch.cat([batch_index, det_bboxes], dim=-1) mask_rois = mask_rois.view(-1, 5) mask_results = self._mask_forward(x, mask_rois) mask_pred = mask_results['mask_pred'] max_shape = img_metas[0]['img_shape_for_onnx'] num_det = det_bboxes.shape[1] det_bboxes = det_bboxes.reshape(-1, 4) det_labels = det_labels.reshape(-1) segm_results = self.mask_head.onnx_export(mask_pred, det_bboxes, det_labels, self.test_cfg, max_shape) segm_results = segm_results.reshape(batch_size, num_det, max_shape[0], max_shape[1]) return segm_results def bbox_onnx_export(self, x, img_metas, proposals, rcnn_test_cfg, **kwargs): """Export bbox branch to onnx which supports batch inference. Args: x (tuple[Tensor]): Feature maps of all scale level. img_metas (list[dict]): Image meta info. proposals (Tensor): Region proposals with batch dimension, has shape [N, num_bboxes, 5]. rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN. Returns: tuple[Tensor, Tensor]: bboxes of shape [N, num_bboxes, 5] and class labels of shape [N, num_bboxes]. """ # get origin input shape to support onnx dynamic input shape assert len( img_metas ) == 1, 'Only support one input image while in exporting to ONNX' img_shapes = img_metas[0]['img_shape_for_onnx'] rois = proposals batch_index = torch.arange( rois.size(0), device=rois.device).float().view(-1, 1, 1).expand( rois.size(0), rois.size(1), 1) rois = torch.cat([batch_index, rois[..., :4]], dim=-1) batch_size = rois.shape[0] num_proposals_per_img = rois.shape[1] # Eliminate the batch dimension rois = rois.view(-1, 5) bbox_results = self._bbox_forward(x, rois) cls_score = bbox_results['cls_score'] bbox_pred = bbox_results['bbox_pred'] # Recover the batch dimension rois = rois.reshape(batch_size, num_proposals_per_img, rois.size(-1)) cls_score = cls_score.reshape(batch_size, num_proposals_per_img, cls_score.size(-1)) bbox_pred = bbox_pred.reshape(batch_size, num_proposals_per_img, bbox_pred.size(-1)) det_bboxes, det_labels = self.bbox_head.onnx_export( rois, cls_score, bbox_pred, img_shapes, cfg=rcnn_test_cfg) return det_bboxes, det_labels