Spaces:
Running
Running
File size: 6,427 Bytes
0f5a1c8 07da240 4b2b363 07da240 0590c70 07da240 4700115 07da240 453c220 07da240 4b2b363 07da240 42713e7 07da240 791f2ed 0266f59 32e0edf 07da240 4b2b363 07da240 42713e7 07da240 c9e9b2e a950000 613fb89 4993ea8 07da240 7d57a3e 07da240 a65c684 d617c72 a65c684 0590c70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import os, re, cv2
from typing import Mapping, Tuple, Dict
import gradio as gr
import numpy as np
import io
import pandas as pd
from PIL import Image
from huggingface_hub import hf_hub_download
from onnxruntime import InferenceSession
from fastapi import FastAPI, File, UploadFile,Body,Query,Response
import uvicorn
app = FastAPI()
# noinspection PyUnresolvedReferences
def make_square(img, target_size):
old_size = img.shape[:2]
desired_size = max(old_size)
desired_size = max(desired_size, target_size)
delta_w = desired_size - old_size[1]
delta_h = desired_size - old_size[0]
top, bottom = delta_h // 2, delta_h - (delta_h // 2)
left, right = delta_w // 2, delta_w - (delta_w // 2)
color = [255, 255, 255]
return cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
# noinspection PyUnresolvedReferences
def smart_resize(img, size):
# Assumes the image has already gone through make_square
if img.shape[0] > size:
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_AREA)
elif img.shape[0] < size:
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC)
else: # just do nothing
pass
return img
class WaifuDiffusionInterrogator:
def __init__(
self,
repo='SmilingWolf/wd-v1-4-vit-tagger',
model_path='model.onnx',
tags_path='selected_tags.csv',
mode: str = "auto"
) -> None:
self.__repo = repo
self.__model_path = model_path
self.__tags_path = tags_path
self._provider_mode = mode
self.__initialized = False
self._model, self._tags = None, None
def _init(self) -> None:
if self.__initialized:
return
model_path = hf_hub_download(self.__repo, filename=self.__model_path)
tags_path = hf_hub_download(self.__repo, filename=self.__tags_path)
self._model = InferenceSession(str(model_path))
self._tags = pd.read_csv(tags_path)
self.__initialized = True
def _calculation(self, image: Image.Image) -> pd.DataFrame:
# print(image) todo: figure out what to do if URL
self._init()
# code for converting the image and running the model is taken from the link below
# thanks, SmilingWolf!
# https://huggingface.co/spaces/SmilingWolf/wd-v1-4-tags/blob/main/app.py
# convert an image to fit the model
_, height, _, _ = self._model.get_inputs()[0].shape
# alpha to white
print(image)
image = image.convert('RGBA')
new_image = Image.new('RGBA', image.size, 'WHITE')
new_image.paste(image, mask=image)
image = new_image.convert('RGB')
image = np.asarray(image)
# PIL RGB to OpenCV BGR
image = image[:, :, ::-1]
image = make_square(image, height)
image = smart_resize(image, height)
image = image.astype(np.float32)
image = np.expand_dims(image, 0)
# evaluate model
input_name = self._model.get_inputs()[0].name
label_name = self._model.get_outputs()[0].name
confidence = self._model.run([label_name], {input_name: image})[0]
full_tags = self._tags[['name', 'category']].copy()
full_tags['confidence'] = confidence[0]
return full_tags
def interrogate(self, image: Image) -> Tuple[Dict[str, float], Dict[str, float]]:
full_tags = self._calculation(image)
# first 4 items are for rating (general, sensitive, questionable, explicit)
ratings = dict(full_tags[full_tags['category'] == 9][['name', 'confidence']].values)
# rest are regular tags
tags = dict(full_tags[full_tags['category'] != 9][['name', 'confidence']].values)
return ratings, tags
WAIFU_MODELS: Mapping[str, WaifuDiffusionInterrogator] = {
'chen-vit': WaifuDiffusionInterrogator(),
'chen-convnext': WaifuDiffusionInterrogator(
repo='SmilingWolf/wd-v1-4-convnext-tagger'
),
'chen-convnext2': WaifuDiffusionInterrogator(
repo="SmilingWolf/wd-v1-4-convnextv2-tagger-v2"
),
'chen-swinv2': WaifuDiffusionInterrogator(
repo='SmilingWolf/wd-v1-4-swinv2-tagger-v2'
),
'chen-moat2': WaifuDiffusionInterrogator(
repo='SmilingWolf/wd-v1-4-moat-tagger-v2'
),
'chen-convnext3': WaifuDiffusionInterrogator(
repo='SmilingWolf/wd-convnext-tagger-v3'
),
'chen-vit3': WaifuDiffusionInterrogator(
repo='SmilingWolf/wd-vit-tagger-v3'
),
'chen-swinv3': WaifuDiffusionInterrogator(
repo='SmilingWolf/wd-swinv2-tagger-v3'
),
}
RE_SPECIAL = re.compile(r'([\\()])')
def image_to_wd14_tags(image: Image.Image, model_name: str, threshold: float,
use_spaces: bool, use_escape: bool, include_ranks=False, score_descend=True) \
-> Tuple[Mapping[str, float], str, Mapping[str, float]]:
model = WAIFU_MODELS[model_name]
ratings, tags = model.interrogate(image)
filtered_tags = {
tag: score for tag, score in tags.items()
if score >= threshold
}
text_items = []
tags_pairs = filtered_tags.items()
if score_descend:
tags_pairs = sorted(tags_pairs, key=lambda x: (-x[1], x[0]))
for tag, score in tags_pairs:
tag_outformat = tag
if use_spaces:
tag_outformat = tag_outformat.replace('_', '-')
else:
tag_outformat = tag_outformat.replace(' ', ', ')
tag_outformat = tag_outformat.replace('_', ' ')
if use_escape:
tag_outformat = re.sub(RE_SPECIAL, r'\\\1', tag_outformat)
if include_ranks:
tag_outformat = f"({tag_outformat}:{score:.3f})"
text_items.append(tag_outformat)
if use_spaces:
output_text = ' '.join(text_items)
else:
output_text = ', '.join(text_items)
return ratings, output_text, filtered_tags
#获取图片调用image_to_wd14_tags函数获取返回 ->"ratings, output_text, filtered_tags"
@app.post("/getOriginalMangaList")
def getOriginalMangaList(image: UploadFile = File(...)):
img = image.file.read()
image_data = Image.open(io.BytesIO(img)).convert("L").convert("RGB")
return image_to_wd14_tags(image_data,'chen-moat2',0.5,True,True)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860) |