File size: 5,826 Bytes
2fe55e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
from pathlib import Path
import cv2
import pytest
import torch
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config, HDStrategy, LDMSampler, SDSampler
current_dir = Path(__file__).parent.absolute().resolve()
save_dir = current_dir / "result"
save_dir.mkdir(exist_ok=True, parents=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device)
def get_data(
fx: float = 1,
fy: float = 1.0,
img_p=current_dir / "image.png",
mask_p=current_dir / "mask.png",
):
img = cv2.imread(str(img_p))
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
mask = cv2.imread(str(mask_p), cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, None, fx=fx, fy=fy, interpolation=cv2.INTER_AREA)
mask = cv2.resize(mask, None, fx=fx, fy=fy, interpolation=cv2.INTER_NEAREST)
return img, mask
def get_config(strategy, **kwargs):
data = dict(
ldm_steps=1,
ldm_sampler=LDMSampler.plms,
hd_strategy=strategy,
hd_strategy_crop_margin=32,
hd_strategy_crop_trigger_size=200,
hd_strategy_resize_limit=200,
)
data.update(**kwargs)
return Config(**data)
def assert_equal(
model,
config,
gt_name,
fx: float = 1,
fy: float = 1,
img_p=current_dir / "image.png",
mask_p=current_dir / "mask.png",
):
img, mask = get_data(fx=fx, fy=fy, img_p=img_p, mask_p=mask_p)
print(f"Input image shape: {img.shape}")
res = model(img, mask, config)
cv2.imwrite(
str(save_dir / gt_name),
res,
[int(cv2.IMWRITE_JPEG_QUALITY), 100, int(cv2.IMWRITE_PNG_COMPRESSION), 0],
)
"""
Note that JPEG is lossy compression, so even if it is the highest quality 100,
when the saved images is reloaded, a difference occurs with the original pixel value.
If you want to save the original images as it is, save it as PNG or BMP.
"""
# gt = cv2.imread(str(current_dir / gt_name), cv2.IMREAD_UNCHANGED)
# assert np.array_equal(res, gt)
@pytest.mark.parametrize(
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
)
def test_lama(strategy):
model = ModelManager(name="lama", device=device)
assert_equal(
model,
get_config(strategy),
f"lama_{strategy[0].upper() + strategy[1:]}_result.png",
)
fx = 1.3
assert_equal(
model,
get_config(strategy),
f"lama_{strategy[0].upper() + strategy[1:]}_fx_{fx}_result.png",
fx=1.3,
)
@pytest.mark.parametrize(
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
)
@pytest.mark.parametrize("ldm_sampler", [LDMSampler.ddim, LDMSampler.plms])
def test_ldm(strategy, ldm_sampler):
model = ModelManager(name="ldm", device=device)
cfg = get_config(strategy, ldm_sampler=ldm_sampler)
assert_equal(
model, cfg, f"ldm_{strategy[0].upper() + strategy[1:]}_{ldm_sampler}_result.png"
)
fx = 1.3
assert_equal(
model,
cfg,
f"ldm_{strategy[0].upper() + strategy[1:]}_{ldm_sampler}_fx_{fx}_result.png",
fx=fx,
)
@pytest.mark.parametrize(
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
)
@pytest.mark.parametrize("zits_wireframe", [False, True])
def test_zits(strategy, zits_wireframe):
model = ModelManager(name="zits", device=device)
cfg = get_config(strategy, zits_wireframe=zits_wireframe)
# os.environ['ZITS_DEBUG_LINE_PATH'] = str(current_dir / 'zits_debug_line.jpg')
# os.environ['ZITS_DEBUG_EDGE_PATH'] = str(current_dir / 'zits_debug_edge.jpg')
assert_equal(
model,
cfg,
f"zits_{strategy[0].upper() + strategy[1:]}_wireframe_{zits_wireframe}_result.png",
)
fx = 1.3
assert_equal(
model,
cfg,
f"zits_{strategy.capitalize()}_wireframe_{zits_wireframe}_fx_{fx}_result.png",
fx=fx,
)
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("no_half", [True, False])
def test_mat(strategy, no_half):
model = ModelManager(name="mat", device=device, no_half=no_half)
cfg = get_config(strategy)
for _ in range(10):
assert_equal(
model,
cfg,
f"mat_{strategy.capitalize()}_result.png",
)
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
def test_fcf(strategy):
model = ModelManager(name="fcf", device=device)
cfg = get_config(strategy)
assert_equal(model, cfg, f"fcf_{strategy.capitalize()}_result.png", fx=2, fy=2)
assert_equal(model, cfg, f"fcf_{strategy.capitalize()}_result.png", fx=3.8, fy=2)
@pytest.mark.parametrize(
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
)
@pytest.mark.parametrize("cv2_flag", ["INPAINT_NS", "INPAINT_TELEA"])
@pytest.mark.parametrize("cv2_radius", [3, 15])
def test_cv2(strategy, cv2_flag, cv2_radius):
model = ModelManager(
name="cv2",
device=torch.device(device),
)
cfg = get_config(strategy, cv2_flag=cv2_flag, cv2_radius=cv2_radius)
assert_equal(
model,
cfg,
f"sd_{strategy.capitalize()}_{cv2_flag}_{cv2_radius}.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
)
@pytest.mark.parametrize(
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
)
def test_manga(strategy):
model = ModelManager(
name="manga",
device=torch.device(device),
)
cfg = get_config(strategy)
assert_equal(
model,
cfg,
f"sd_{strategy.capitalize()}.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
)
|