File size: 18,826 Bytes
2fe55e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
#!/usr/bin/env python3
import os
import hashlib

os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"

import imghdr
import io
import logging
import multiprocessing
import random
import time
from pathlib import Path

import cv2
import numpy as np
import torch
from PIL import Image
from loguru import logger

from lama_cleaner.const import SD15_MODELS
from lama_cleaner.file_manager import FileManager
from lama_cleaner.model.utils import torch_gc
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.plugins import (
    InteractiveSeg,
    RemoveBG,
    RealESRGANUpscaler,
    MakeGIF,
    GFPGANPlugin,
    RestoreFormerPlugin,
    AnimeSeg,
)
from lama_cleaner.schema import Config

try:
    torch._C._jit_override_can_fuse_on_cpu(False)
    torch._C._jit_override_can_fuse_on_gpu(False)
    torch._C._jit_set_texpr_fuser_enabled(False)
    torch._C._jit_set_nvfuser_enabled(False)
except:
    pass

from flask import (
    Flask,
    request,
    send_file,
    cli,
    make_response,
    send_from_directory,
    jsonify,
)
from flask_socketio import SocketIO

# Disable ability for Flask to display warning about using a development server in a production environment.
# https://gist.github.com/jerblack/735b9953ba1ab6234abb43174210d356
cli.show_server_banner = lambda *_: None
from flask_cors import CORS

from lama_cleaner.helper import (
    load_img,
    numpy_to_bytes,
    resize_max_size,
    pil_to_bytes,
)

NUM_THREADS = str(multiprocessing.cpu_count())

# fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"

os.environ["OMP_NUM_THREADS"] = NUM_THREADS
os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS
os.environ["MKL_NUM_THREADS"] = NUM_THREADS
os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS
os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS
if os.environ.get("CACHE_DIR"):
    os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"]

BUILD_DIR = os.environ.get("LAMA_CLEANER_BUILD_DIR", "app/build")


class NoFlaskwebgui(logging.Filter):
    def filter(self, record):
        msg = record.getMessage()
        if "Running on http:" in msg:
            print(msg[msg.index("Running on http:") :])

        return (
            "flaskwebgui-keep-server-alive" not in msg
            and "socket.io" not in msg
            and "This is a development server." not in msg
        )


logging.getLogger("werkzeug").addFilter(NoFlaskwebgui())

app = Flask(__name__, static_folder=os.path.join(BUILD_DIR, "static"))
app.config["JSON_AS_ASCII"] = False
CORS(app, expose_headers=["Content-Disposition"])

sio_logger = logging.getLogger("sio-logger")
sio_logger.setLevel(logging.ERROR)
socketio = SocketIO(app, cors_allowed_origins="*", async_mode="threading")

model: ModelManager = None
thumb: FileManager = None
output_dir: str = None
device = None
input_image_path: str = None
is_disable_model_switch: bool = False
is_controlnet: bool = False
controlnet_method: str = "control_v11p_sd15_canny"
is_enable_file_manager: bool = False
is_enable_auto_saving: bool = False
is_desktop: bool = False
image_quality: int = 95
plugins = {}


def get_image_ext(img_bytes):
    w = imghdr.what("", img_bytes)
    if w is None:
        w = "jpeg"
    return w


def diffuser_callback(i, t, latents):
    socketio.emit("diffusion_progress", {"step": i})


@app.route("/save_image", methods=["POST"])
def save_image():
    if output_dir is None:
        return "--output-dir is None", 500

    input = request.files
    filename = request.form["filename"]
    origin_image_bytes = input["image"].read()  # RGB
    ext = get_image_ext(origin_image_bytes)
    image, alpha_channel, exif_infos = load_img(origin_image_bytes, return_exif=True)
    save_path = os.path.join(output_dir, filename)

    if alpha_channel is not None:
        if alpha_channel.shape[:2] != image.shape[:2]:
            alpha_channel = cv2.resize(
                alpha_channel, dsize=(image.shape[1], image.shape[0])
            )
        image = np.concatenate((image, alpha_channel[:, :, np.newaxis]), axis=-1)

    pil_image = Image.fromarray(image)

    img_bytes = pil_to_bytes(
        pil_image,
        ext,
        quality=image_quality,
        exif_infos=exif_infos,
    )
    with open(save_path, "wb") as fw:
        fw.write(img_bytes)

    return "ok", 200


@app.route("/medias/<tab>")
def medias(tab):
    if tab == "image":
        response = make_response(jsonify(thumb.media_names), 200)
    else:
        response = make_response(jsonify(thumb.output_media_names), 200)
    # response.last_modified = thumb.modified_time[tab]
    # response.cache_control.no_cache = True
    # response.cache_control.max_age = 0
    # response.make_conditional(request)
    return response


@app.route("/media/<tab>/<filename>")
def media_file(tab, filename):
    if tab == "image":
        return send_from_directory(thumb.root_directory, filename)
    return send_from_directory(thumb.output_dir, filename)


@app.route("/media_thumbnail/<tab>/<filename>")
def media_thumbnail_file(tab, filename):
    args = request.args
    width = args.get("width")
    height = args.get("height")
    if width is None and height is None:
        width = 256
    if width:
        width = int(float(width))
    if height:
        height = int(float(height))

    directory = thumb.root_directory
    if tab == "output":
        directory = thumb.output_dir
    thumb_filename, (width, height) = thumb.get_thumbnail(
        directory, filename, width, height
    )
    thumb_filepath = f"{app.config['THUMBNAIL_MEDIA_THUMBNAIL_ROOT']}{thumb_filename}"

    response = make_response(send_file(thumb_filepath))
    response.headers["X-Width"] = str(width)
    response.headers["X-Height"] = str(height)
    return response


#不使用接口,而是直接使用
# @app.route("/inpaint", methods=["POST"])
#每次上传一个图片和遮罩 =>files ,然后返回bytes数据
def process(files:dict,payload:dict):
    input = files
    # RGB
    origin_image_bytes = input["image"].read()
    image, alpha_channel, exif_infos = load_img(origin_image_bytes, return_exif=True)

    mask, _ = load_img(input["mask"].read(), gray=True)
    mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1]

    if image.shape[:2] != mask.shape[:2]:
        return (
            f"Mask shape{mask.shape[:2]} not queal to Image shape{image.shape[:2]}",
            400,
        )

    original_shape = image.shape
    interpolation = cv2.INTER_CUBIC

    form = payload
    size_limit = max(image.shape)

    if "paintByExampleImage" in input:
        paint_by_example_example_image, _ = load_img(
            input["paintByExampleImage"].read()
        )
        paint_by_example_example_image = Image.fromarray(paint_by_example_example_image)
    else:
        paint_by_example_example_image = None

    config = Config(
        ldm_steps=form["ldmSteps"],
        ldm_sampler=form["ldmSampler"],
        hd_strategy=form["hdStrategy"],
        zits_wireframe=form["zitsWireframe"],
        hd_strategy_crop_margin=form["hdStrategyCropMargin"],
        hd_strategy_crop_trigger_size=form["hdStrategyCropTrigerSize"],
        hd_strategy_resize_limit=form["hdStrategyResizeLimit"],
        prompt=form["prompt"],
        negative_prompt=form["negativePrompt"],
        use_croper=form["useCroper"],
        croper_x=form["croperX"],
        croper_y=form["croperY"],
        croper_height=form["croperHeight"],
        croper_width=form["croperWidth"],
        sd_scale=form["sdScale"],
        sd_mask_blur=form["sdMaskBlur"],
        sd_strength=form["sdStrength"],
        sd_steps=form["sdSteps"],
        sd_guidance_scale=form["sdGuidanceScale"],
        sd_sampler=form["sdSampler"],
        sd_seed=form["sdSeed"],
        sd_match_histograms=form["sdMatchHistograms"],
        cv2_flag=form["cv2Flag"],
        cv2_radius=form["cv2Radius"],
        paint_by_example_steps=form["paintByExampleSteps"],
        paint_by_example_guidance_scale=form["paintByExampleGuidanceScale"],
        paint_by_example_mask_blur=form["paintByExampleMaskBlur"],
        paint_by_example_seed=form["paintByExampleSeed"],
        paint_by_example_match_histograms=form["paintByExampleMatchHistograms"],
        paint_by_example_example_image=paint_by_example_example_image,
        p2p_steps=form["p2pSteps"],
        p2p_image_guidance_scale=form["p2pImageGuidanceScale"],
        p2p_guidance_scale=form["p2pGuidanceScale"],
        controlnet_conditioning_scale=form["controlnet_conditioning_scale"],
        controlnet_method=form["controlnet_method"],
    )

    if config.sd_seed == -1:
        config.sd_seed = random.randint(1, 999999999)
    if config.paint_by_example_seed == -1:
        config.paint_by_example_seed = random.randint(1, 999999999)

    logger.info(f"Origin image shape: {original_shape}")
    image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)

    mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)

    start = time.time()
    try:
        res_np_img = model(image, mask, config)
    except RuntimeError as e:
        if "CUDA out of memory. " in str(e):
            # NOTE: the string may change?
            return "CUDA out of memory", 500
        else:
            logger.exception(e)
            return f"{str(e)}", 500
    finally:
        logger.info(f"process time: {(time.time() - start) * 1000}ms")
        torch_gc()

    res_np_img = cv2.cvtColor(res_np_img.astype(np.uint8), cv2.COLOR_BGR2RGB)
    if alpha_channel is not None:
        if alpha_channel.shape[:2] != res_np_img.shape[:2]:
            alpha_channel = cv2.resize(
                alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0])
            )
        res_np_img = np.concatenate(
            (res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
        )

    ext = get_image_ext(origin_image_bytes)

    bytes_io = io.BytesIO(
        pil_to_bytes(
            Image.fromarray(res_np_img),
            ext,
            quality=image_quality,
            exif_infos=exif_infos,
        )
    )

    return bytes_io


@app.route("/run_plugin", methods=["POST"])
def run_plugin():
    form = request.form
    files = request.files
    name = form["name"]
    if name not in plugins:
        return "Plugin not found", 500

    origin_image_bytes = files["image"].read()  # RGB
    rgb_np_img, alpha_channel, exif_infos = load_img(
        origin_image_bytes, return_exif=True
    )

    start = time.time()
    try:
        form = dict(form)
        if name == InteractiveSeg.name:
            img_md5 = hashlib.md5(origin_image_bytes).hexdigest()
            form["img_md5"] = img_md5
        bgr_res = plugins[name](rgb_np_img, files, form)
    except RuntimeError as e:
        torch.cuda.empty_cache()
        if "CUDA out of memory. " in str(e):
            # NOTE: the string may change?
            return "CUDA out of memory", 500
        else:
            logger.exception(e)
            return "Internal Server Error", 500

    logger.info(f"{name} process time: {(time.time() - start) * 1000}ms")
    torch_gc()

    if name == MakeGIF.name:
        return send_file(
            io.BytesIO(bgr_res),
            mimetype="image/gif",
            as_attachment=True,
            download_name=form["filename"],
        )
    if name == InteractiveSeg.name:
        return make_response(
            send_file(
                io.BytesIO(numpy_to_bytes(bgr_res, "png")),
                mimetype="image/png",
            )
        )

    if name in [RemoveBG.name, AnimeSeg.name]:
        rgb_res = bgr_res
        ext = "png"
    else:
        rgb_res = cv2.cvtColor(bgr_res, cv2.COLOR_BGR2RGB)
        ext = get_image_ext(origin_image_bytes)
        if alpha_channel is not None:
            if alpha_channel.shape[:2] != rgb_res.shape[:2]:
                alpha_channel = cv2.resize(
                    alpha_channel, dsize=(rgb_res.shape[1], rgb_res.shape[0])
                )
            rgb_res = np.concatenate(
                (rgb_res, alpha_channel[:, :, np.newaxis]), axis=-1
            )

    response = make_response(
        send_file(
            io.BytesIO(
                pil_to_bytes(
                    Image.fromarray(rgb_res),
                    ext,
                    quality=image_quality,
                    exif_infos=exif_infos,
                )
            ),
            mimetype=f"image/{ext}",
        )
    )
    return response


@app.route("/server_config", methods=["GET"])
def get_server_config():
    return {
        "isControlNet": is_controlnet,
        "controlNetMethod": controlnet_method,
        "isDisableModelSwitchState": is_disable_model_switch,
        "isEnableAutoSaving": is_enable_auto_saving,
        "enableFileManager": is_enable_file_manager,
        "plugins": list(plugins.keys()),
    }, 200


@app.route("/model")
def current_model():
    return model.name, 200


@app.route("/model_downloaded/<name>")
def model_downloaded(name):
    return str(model.is_downloaded(name)), 200


@app.route("/is_desktop")
def get_is_desktop():
    return str(is_desktop), 200


@app.route("/model", methods=["POST"])
def switch_model():
    if is_disable_model_switch:
        return "Switch model is disabled", 400

    new_name = request.form.get("name")
    if new_name == model.name:
        return "Same model", 200

    try:
        model.switch(new_name)
    except NotImplementedError:
        return f"{new_name} not implemented", 403
    return f"ok, switch to {new_name}", 200


@app.route("/")
def index():
    return send_file(os.path.join(BUILD_DIR, "index.html"))


@app.route("/inputimage")
def set_input_photo():
    if input_image_path:
        with open(input_image_path, "rb") as f:
            image_in_bytes = f.read()
        return send_file(
            input_image_path,
            as_attachment=True,
            download_name=Path(input_image_path).name,
            mimetype=f"image/{get_image_ext(image_in_bytes)}",
        )
    else:
        return "No Input Image"


def build_plugins(args):
    global plugins
    if args.enable_interactive_seg:
        logger.info(f"Initialize {InteractiveSeg.name} plugin")
        plugins[InteractiveSeg.name] = InteractiveSeg(
            args.interactive_seg_model, args.interactive_seg_device
        )

    if args.enable_remove_bg:
        logger.info(f"Initialize {RemoveBG.name} plugin")
        plugins[RemoveBG.name] = RemoveBG()

    if args.enable_anime_seg:
        logger.info(f"Initialize {AnimeSeg.name} plugin")
        plugins[AnimeSeg.name] = AnimeSeg()

    if args.enable_realesrgan:
        logger.info(
            f"Initialize {RealESRGANUpscaler.name} plugin: {args.realesrgan_model}, {args.realesrgan_device}"
        )
        plugins[RealESRGANUpscaler.name] = RealESRGANUpscaler(
            args.realesrgan_model,
            args.realesrgan_device,
            no_half=args.realesrgan_no_half,
        )

    if args.enable_gfpgan:
        logger.info(f"Initialize {GFPGANPlugin.name} plugin")
        if args.enable_realesrgan:
            logger.info("Use realesrgan as GFPGAN background upscaler")
        else:
            logger.info(
                f"GFPGAN no background upscaler, use --enable-realesrgan to enable it"
            )
        plugins[GFPGANPlugin.name] = GFPGANPlugin(
            args.gfpgan_device, upscaler=plugins.get(RealESRGANUpscaler.name, None)
        )

    if args.enable_restoreformer:
        logger.info(f"Initialize {RestoreFormerPlugin.name} plugin")
        plugins[RestoreFormerPlugin.name] = RestoreFormerPlugin(
            args.restoreformer_device,
            upscaler=plugins.get(RealESRGANUpscaler.name, None),
        )

    if args.enable_gif:
        logger.info(f"Initialize GIF plugin")
        plugins[MakeGIF.name] = MakeGIF()


def main(args):
    global model
    global device
    global input_image_path
    global is_disable_model_switch
    global is_enable_file_manager
    global is_desktop
    global thumb
    global output_dir
    global is_enable_auto_saving
    global is_controlnet
    global controlnet_method
    global image_quality

    build_plugins(args)

    image_quality = args.quality

    if args.sd_controlnet and args.model in SD15_MODELS:
        is_controlnet = True
        controlnet_method = args.sd_controlnet_method

    output_dir = args.output_dir
    if output_dir:
        is_enable_auto_saving = True

    device = torch.device(args.device)
    is_disable_model_switch = args.disable_model_switch
    is_desktop = args.gui
    if is_disable_model_switch:
        logger.info(
            f"Start with --disable-model-switch, model switch on frontend is disable"
        )

    if args.input and os.path.isdir(args.input):
        logger.info(f"Initialize file manager")
        thumb = FileManager(app)
        is_enable_file_manager = True
        app.config["THUMBNAIL_MEDIA_ROOT"] = args.input
        app.config["THUMBNAIL_MEDIA_THUMBNAIL_ROOT"] = os.path.join(
            args.output_dir, "lama_cleaner_thumbnails"
        )
        thumb.output_dir = Path(args.output_dir)
        # thumb.start()
        # try:
        #     while True:
        #         time.sleep(1)
        # finally:
        #     thumb.image_dir_observer.stop()
        #     thumb.image_dir_observer.join()
        #     thumb.output_dir_observer.stop()
        #     thumb.output_dir_observer.join()

    else:
        input_image_path = args.input

    model = ModelManager(
        name=args.model,
        sd_controlnet=args.sd_controlnet,
        sd_controlnet_method=args.sd_controlnet_method,
        device=device,
        no_half=args.no_half,
        hf_access_token=args.hf_access_token,
        disable_nsfw=args.sd_disable_nsfw or args.disable_nsfw,
        sd_cpu_textencoder=args.sd_cpu_textencoder,
        sd_run_local=args.sd_run_local,
        sd_local_model_path=args.sd_local_model_path,
        local_files_only=args.local_files_only,
        cpu_offload=args.cpu_offload,
        enable_xformers=args.sd_enable_xformers or args.enable_xformers,
        callback=diffuser_callback,
    )

    #只初始化,不构建flask ,方便使用process函数
    # if args.gui:
    #     app_width, app_height = args.gui_size
    #     from flaskwebgui import FlaskUI
    #
    #     ui = FlaskUI(
    #         app,
    #         socketio=socketio,
    #         width=app_width,
    #         height=app_height,
    #         host=args.host,
    #         port=args.port,
    #         close_server_on_exit=not args.no_gui_auto_close,
    #     )
    #     ui.run()
    # else:
    #     socketio.run(
    #         app,
    #         host=args.host,
    #         port=args.port,
    #         debug=args.debug,
    #         allow_unsafe_werkzeug=True,
    #     )