File size: 10,883 Bytes
2fe55e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import gc

import PIL.Image
import cv2
import numpy as np
import torch
from diffusers import ControlNetModel
from loguru import logger

from lama_cleaner.model.base import DiffusionInpaintModel
from lama_cleaner.model.utils import torch_gc, get_scheduler
from lama_cleaner.schema import Config


class CPUTextEncoderWrapper:
    def __init__(self, text_encoder, torch_dtype):
        self.config = text_encoder.config
        self.text_encoder = text_encoder.to(torch.device("cpu"), non_blocking=True)
        self.text_encoder = self.text_encoder.to(torch.float32, non_blocking=True)
        self.torch_dtype = torch_dtype
        del text_encoder
        torch_gc()

    def __call__(self, x, **kwargs):
        input_device = x.device
        return [
            self.text_encoder(x.to(self.text_encoder.device), **kwargs)[0]
            .to(input_device)
            .to(self.torch_dtype)
        ]

    @property
    def dtype(self):
        return self.torch_dtype


NAMES_MAP = {
    "sd1.5": "runwayml/stable-diffusion-inpainting",
    "anything4": "Sanster/anything-4.0-inpainting",
    "realisticVision1.4": "Sanster/Realistic_Vision_V1.4-inpainting",
}

NATIVE_NAMES_MAP = {
    "sd1.5": "runwayml/stable-diffusion-v1-5",
    "anything4": "andite/anything-v4.0",
    "realisticVision1.4": "SG161222/Realistic_Vision_V1.4",
}


def make_inpaint_condition(image, image_mask):
    """
    image: [H, W, C] RGB
    mask: [H, W, 1] 255 means area to repaint
    """
    image = image.astype(np.float32) / 255.0
    image[image_mask[:, :, -1] > 128] = -1.0  # set as masked pixel
    image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
    image = torch.from_numpy(image)
    return image


def load_from_local_model(
    local_model_path, torch_dtype, controlnet, pipe_class, is_native_control_inpaint
):
    from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
        download_from_original_stable_diffusion_ckpt,
    )

    logger.info(f"Converting {local_model_path} to diffusers controlnet pipeline")

    try:
        pipe = download_from_original_stable_diffusion_ckpt(
            local_model_path,
            num_in_channels=4 if is_native_control_inpaint else 9,
            from_safetensors=local_model_path.endswith("safetensors"),
            device="cpu",
            load_safety_checker=False,
        )
    except Exception as e:
        err_msg = str(e)
        logger.exception(e)
        if is_native_control_inpaint and "[320, 9, 3, 3]" in err_msg:
            logger.error(
                "control_v11p_sd15_inpaint method requires normal SD model, not inpainting SD model"
            )
        if not is_native_control_inpaint and "[320, 4, 3, 3]" in err_msg:
            logger.error(
                f"{controlnet.config['_name_or_path']} method requires inpainting SD model, "
                f"you can convert any SD model to inpainting model in AUTO1111: \n"
                f"https://www.reddit.com/r/StableDiffusion/comments/zyi24j/how_to_turn_any_model_into_an_inpainting_model/"
            )
        exit(-1)

    inpaint_pipe = pipe_class(
        vae=pipe.vae,
        text_encoder=pipe.text_encoder,
        tokenizer=pipe.tokenizer,
        unet=pipe.unet,
        controlnet=controlnet,
        scheduler=pipe.scheduler,
        safety_checker=None,
        feature_extractor=None,
        requires_safety_checker=False,
    )

    del pipe
    gc.collect()
    return inpaint_pipe.to(torch_dtype=torch_dtype)


class ControlNet(DiffusionInpaintModel):
    name = "controlnet"
    pad_mod = 8
    min_size = 512

    def init_model(self, device: torch.device, **kwargs):
        fp16 = not kwargs.get("no_half", False)

        model_kwargs = {
            "local_files_only": kwargs.get("local_files_only", kwargs["sd_run_local"])
        }
        if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False):
            logger.info("Disable Stable Diffusion Model NSFW checker")
            model_kwargs.update(
                dict(
                    safety_checker=None,
                    feature_extractor=None,
                    requires_safety_checker=False,
                )
            )

        use_gpu = device == torch.device("cuda") and torch.cuda.is_available()
        torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32

        sd_controlnet_method = kwargs["sd_controlnet_method"]
        self.sd_controlnet_method = sd_controlnet_method

        if sd_controlnet_method == "control_v11p_sd15_inpaint":
            from diffusers import StableDiffusionControlNetPipeline as PipeClass

            self.is_native_control_inpaint = True
        else:
            from .pipeline import StableDiffusionControlNetInpaintPipeline as PipeClass

            self.is_native_control_inpaint = False

        if self.is_native_control_inpaint:
            model_id = NATIVE_NAMES_MAP[kwargs["name"]]
        else:
            model_id = NAMES_MAP[kwargs["name"]]

        controlnet = ControlNetModel.from_pretrained(
            f"lllyasviel/{sd_controlnet_method}", torch_dtype=torch_dtype
        )
        self.is_local_sd_model = False
        if kwargs.get("sd_local_model_path", None):
            self.is_local_sd_model = True
            self.model = load_from_local_model(
                kwargs["sd_local_model_path"],
                torch_dtype=torch_dtype,
                controlnet=controlnet,
                pipe_class=PipeClass,
                is_native_control_inpaint=self.is_native_control_inpaint,
            )
        else:
            self.model = PipeClass.from_pretrained(
                model_id,
                controlnet=controlnet,
                revision="fp16" if use_gpu and fp16 else "main",
                torch_dtype=torch_dtype,
                **model_kwargs,
            )

        # https://huggingface.co/docs/diffusers/v0.7.0/en/api/pipelines/stable_diffusion#diffusers.StableDiffusionInpaintPipeline.enable_attention_slicing
        self.model.enable_attention_slicing()
        # https://huggingface.co/docs/diffusers/v0.7.0/en/optimization/fp16#memory-efficient-attention
        if kwargs.get("enable_xformers", False):
            self.model.enable_xformers_memory_efficient_attention()

        if kwargs.get("cpu_offload", False) and use_gpu:
            logger.info("Enable sequential cpu offload")
            self.model.enable_sequential_cpu_offload(gpu_id=0)
        else:
            self.model = self.model.to(device)
            if kwargs["sd_cpu_textencoder"]:
                logger.info("Run Stable Diffusion TextEncoder on CPU")
                self.model.text_encoder = CPUTextEncoderWrapper(
                    self.model.text_encoder, torch_dtype
                )

        self.callback = kwargs.pop("callback", None)

    def forward(self, image, mask, config: Config):
        """Input image and output image have same size
        image: [H, W, C] RGB
        mask: [H, W, 1] 255 means area to repaint
        return: BGR IMAGE
        """
        scheduler_config = self.model.scheduler.config
        scheduler = get_scheduler(config.sd_sampler, scheduler_config)
        self.model.scheduler = scheduler

        if config.sd_mask_blur != 0:
            k = 2 * config.sd_mask_blur + 1
            mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis]

        img_h, img_w = image.shape[:2]

        if self.is_native_control_inpaint:
            control_image = make_inpaint_condition(image, mask)
            output = self.model(
                prompt=config.prompt,
                image=control_image,
                height=img_h,
                width=img_w,
                num_inference_steps=config.sd_steps,
                guidance_scale=config.sd_guidance_scale,
                controlnet_conditioning_scale=config.controlnet_conditioning_scale,
                negative_prompt=config.negative_prompt,
                generator=torch.manual_seed(config.sd_seed),
                output_type="np.array",
                callback=self.callback,
            ).images[0]
        else:
            if "canny" in self.sd_controlnet_method:
                canny_image = cv2.Canny(image, 100, 200)
                canny_image = canny_image[:, :, None]
                canny_image = np.concatenate(
                    [canny_image, canny_image, canny_image], axis=2
                )
                canny_image = PIL.Image.fromarray(canny_image)
                control_image = canny_image
            elif "openpose" in self.sd_controlnet_method:
                from controlnet_aux import OpenposeDetector

                processor = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
                control_image = processor(image, hand_and_face=True)
            elif "depth" in self.sd_controlnet_method:
                from transformers import pipeline

                depth_estimator = pipeline("depth-estimation")
                depth_image = depth_estimator(PIL.Image.fromarray(image))["depth"]
                depth_image = np.array(depth_image)
                depth_image = depth_image[:, :, None]
                depth_image = np.concatenate(
                    [depth_image, depth_image, depth_image], axis=2
                )
                control_image = PIL.Image.fromarray(depth_image)
            else:
                raise NotImplementedError(
                    f"{self.sd_controlnet_method} not implemented"
                )

            mask_image = PIL.Image.fromarray(mask[:, :, -1], mode="L")
            image = PIL.Image.fromarray(image)

            output = self.model(
                image=image,
                control_image=control_image,
                prompt=config.prompt,
                negative_prompt=config.negative_prompt,
                mask_image=mask_image,
                num_inference_steps=config.sd_steps,
                guidance_scale=config.sd_guidance_scale,
                output_type="np.array",
                callback=self.callback,
                height=img_h,
                width=img_w,
                generator=torch.manual_seed(config.sd_seed),
                controlnet_conditioning_scale=config.controlnet_conditioning_scale,
            ).images[0]

        output = (output * 255).round().astype("uint8")
        output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
        return output

    def forward_post_process(self, result, image, mask, config):
        if config.sd_match_histograms:
            result = self._match_histograms(result, image[:, :, ::-1], mask)

        if config.sd_mask_blur != 0:
            k = 2 * config.sd_mask_blur + 1
            mask = cv2.GaussianBlur(mask, (k, k), 0)
        return result, image, mask

    @staticmethod
    def is_downloaded() -> bool:
        # model will be downloaded when app start, and can't switch in frontend settings
        return True