File size: 10,883 Bytes
2fe55e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import gc
import PIL.Image
import cv2
import numpy as np
import torch
from diffusers import ControlNetModel
from loguru import logger
from lama_cleaner.model.base import DiffusionInpaintModel
from lama_cleaner.model.utils import torch_gc, get_scheduler
from lama_cleaner.schema import Config
class CPUTextEncoderWrapper:
def __init__(self, text_encoder, torch_dtype):
self.config = text_encoder.config
self.text_encoder = text_encoder.to(torch.device("cpu"), non_blocking=True)
self.text_encoder = self.text_encoder.to(torch.float32, non_blocking=True)
self.torch_dtype = torch_dtype
del text_encoder
torch_gc()
def __call__(self, x, **kwargs):
input_device = x.device
return [
self.text_encoder(x.to(self.text_encoder.device), **kwargs)[0]
.to(input_device)
.to(self.torch_dtype)
]
@property
def dtype(self):
return self.torch_dtype
NAMES_MAP = {
"sd1.5": "runwayml/stable-diffusion-inpainting",
"anything4": "Sanster/anything-4.0-inpainting",
"realisticVision1.4": "Sanster/Realistic_Vision_V1.4-inpainting",
}
NATIVE_NAMES_MAP = {
"sd1.5": "runwayml/stable-diffusion-v1-5",
"anything4": "andite/anything-v4.0",
"realisticVision1.4": "SG161222/Realistic_Vision_V1.4",
}
def make_inpaint_condition(image, image_mask):
"""
image: [H, W, C] RGB
mask: [H, W, 1] 255 means area to repaint
"""
image = image.astype(np.float32) / 255.0
image[image_mask[:, :, -1] > 128] = -1.0 # set as masked pixel
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return image
def load_from_local_model(
local_model_path, torch_dtype, controlnet, pipe_class, is_native_control_inpaint
):
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
download_from_original_stable_diffusion_ckpt,
)
logger.info(f"Converting {local_model_path} to diffusers controlnet pipeline")
try:
pipe = download_from_original_stable_diffusion_ckpt(
local_model_path,
num_in_channels=4 if is_native_control_inpaint else 9,
from_safetensors=local_model_path.endswith("safetensors"),
device="cpu",
load_safety_checker=False,
)
except Exception as e:
err_msg = str(e)
logger.exception(e)
if is_native_control_inpaint and "[320, 9, 3, 3]" in err_msg:
logger.error(
"control_v11p_sd15_inpaint method requires normal SD model, not inpainting SD model"
)
if not is_native_control_inpaint and "[320, 4, 3, 3]" in err_msg:
logger.error(
f"{controlnet.config['_name_or_path']} method requires inpainting SD model, "
f"you can convert any SD model to inpainting model in AUTO1111: \n"
f"https://www.reddit.com/r/StableDiffusion/comments/zyi24j/how_to_turn_any_model_into_an_inpainting_model/"
)
exit(-1)
inpaint_pipe = pipe_class(
vae=pipe.vae,
text_encoder=pipe.text_encoder,
tokenizer=pipe.tokenizer,
unet=pipe.unet,
controlnet=controlnet,
scheduler=pipe.scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
del pipe
gc.collect()
return inpaint_pipe.to(torch_dtype=torch_dtype)
class ControlNet(DiffusionInpaintModel):
name = "controlnet"
pad_mod = 8
min_size = 512
def init_model(self, device: torch.device, **kwargs):
fp16 = not kwargs.get("no_half", False)
model_kwargs = {
"local_files_only": kwargs.get("local_files_only", kwargs["sd_run_local"])
}
if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False):
logger.info("Disable Stable Diffusion Model NSFW checker")
model_kwargs.update(
dict(
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
)
use_gpu = device == torch.device("cuda") and torch.cuda.is_available()
torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32
sd_controlnet_method = kwargs["sd_controlnet_method"]
self.sd_controlnet_method = sd_controlnet_method
if sd_controlnet_method == "control_v11p_sd15_inpaint":
from diffusers import StableDiffusionControlNetPipeline as PipeClass
self.is_native_control_inpaint = True
else:
from .pipeline import StableDiffusionControlNetInpaintPipeline as PipeClass
self.is_native_control_inpaint = False
if self.is_native_control_inpaint:
model_id = NATIVE_NAMES_MAP[kwargs["name"]]
else:
model_id = NAMES_MAP[kwargs["name"]]
controlnet = ControlNetModel.from_pretrained(
f"lllyasviel/{sd_controlnet_method}", torch_dtype=torch_dtype
)
self.is_local_sd_model = False
if kwargs.get("sd_local_model_path", None):
self.is_local_sd_model = True
self.model = load_from_local_model(
kwargs["sd_local_model_path"],
torch_dtype=torch_dtype,
controlnet=controlnet,
pipe_class=PipeClass,
is_native_control_inpaint=self.is_native_control_inpaint,
)
else:
self.model = PipeClass.from_pretrained(
model_id,
controlnet=controlnet,
revision="fp16" if use_gpu and fp16 else "main",
torch_dtype=torch_dtype,
**model_kwargs,
)
# https://huggingface.co/docs/diffusers/v0.7.0/en/api/pipelines/stable_diffusion#diffusers.StableDiffusionInpaintPipeline.enable_attention_slicing
self.model.enable_attention_slicing()
# https://huggingface.co/docs/diffusers/v0.7.0/en/optimization/fp16#memory-efficient-attention
if kwargs.get("enable_xformers", False):
self.model.enable_xformers_memory_efficient_attention()
if kwargs.get("cpu_offload", False) and use_gpu:
logger.info("Enable sequential cpu offload")
self.model.enable_sequential_cpu_offload(gpu_id=0)
else:
self.model = self.model.to(device)
if kwargs["sd_cpu_textencoder"]:
logger.info("Run Stable Diffusion TextEncoder on CPU")
self.model.text_encoder = CPUTextEncoderWrapper(
self.model.text_encoder, torch_dtype
)
self.callback = kwargs.pop("callback", None)
def forward(self, image, mask, config: Config):
"""Input image and output image have same size
image: [H, W, C] RGB
mask: [H, W, 1] 255 means area to repaint
return: BGR IMAGE
"""
scheduler_config = self.model.scheduler.config
scheduler = get_scheduler(config.sd_sampler, scheduler_config)
self.model.scheduler = scheduler
if config.sd_mask_blur != 0:
k = 2 * config.sd_mask_blur + 1
mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis]
img_h, img_w = image.shape[:2]
if self.is_native_control_inpaint:
control_image = make_inpaint_condition(image, mask)
output = self.model(
prompt=config.prompt,
image=control_image,
height=img_h,
width=img_w,
num_inference_steps=config.sd_steps,
guidance_scale=config.sd_guidance_scale,
controlnet_conditioning_scale=config.controlnet_conditioning_scale,
negative_prompt=config.negative_prompt,
generator=torch.manual_seed(config.sd_seed),
output_type="np.array",
callback=self.callback,
).images[0]
else:
if "canny" in self.sd_controlnet_method:
canny_image = cv2.Canny(image, 100, 200)
canny_image = canny_image[:, :, None]
canny_image = np.concatenate(
[canny_image, canny_image, canny_image], axis=2
)
canny_image = PIL.Image.fromarray(canny_image)
control_image = canny_image
elif "openpose" in self.sd_controlnet_method:
from controlnet_aux import OpenposeDetector
processor = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
control_image = processor(image, hand_and_face=True)
elif "depth" in self.sd_controlnet_method:
from transformers import pipeline
depth_estimator = pipeline("depth-estimation")
depth_image = depth_estimator(PIL.Image.fromarray(image))["depth"]
depth_image = np.array(depth_image)
depth_image = depth_image[:, :, None]
depth_image = np.concatenate(
[depth_image, depth_image, depth_image], axis=2
)
control_image = PIL.Image.fromarray(depth_image)
else:
raise NotImplementedError(
f"{self.sd_controlnet_method} not implemented"
)
mask_image = PIL.Image.fromarray(mask[:, :, -1], mode="L")
image = PIL.Image.fromarray(image)
output = self.model(
image=image,
control_image=control_image,
prompt=config.prompt,
negative_prompt=config.negative_prompt,
mask_image=mask_image,
num_inference_steps=config.sd_steps,
guidance_scale=config.sd_guidance_scale,
output_type="np.array",
callback=self.callback,
height=img_h,
width=img_w,
generator=torch.manual_seed(config.sd_seed),
controlnet_conditioning_scale=config.controlnet_conditioning_scale,
).images[0]
output = (output * 255).round().astype("uint8")
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
return output
def forward_post_process(self, result, image, mask, config):
if config.sd_match_histograms:
result = self._match_histograms(result, image[:, :, ::-1], mask)
if config.sd_mask_blur != 0:
k = 2 * config.sd_mask_blur + 1
mask = cv2.GaussianBlur(mask, (k, k), 0)
return result, image, mask
@staticmethod
def is_downloaded() -> bool:
# model will be downloaded when app start, and can't switch in frontend settings
return True
|