File size: 6,219 Bytes
2fe55e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os

from lama_cleaner.const import SD_CONTROLNET_CHOICES

os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
from pathlib import Path

import pytest
import torch

from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import HDStrategy, SDSampler
from lama_cleaner.tests.test_model import get_config, assert_equal

current_dir = Path(__file__).parent.absolute().resolve()
save_dir = current_dir / "result"
save_dir.mkdir(exist_ok=True, parents=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device)


@pytest.mark.parametrize("sd_device", ["cuda", "mps"])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.uni_pc])
@pytest.mark.parametrize("cpu_textencoder", [True])
@pytest.mark.parametrize("disable_nsfw", [True])
@pytest.mark.parametrize("sd_controlnet_method", SD_CONTROLNET_CHOICES)
def test_runway_sd_1_5(
    sd_device, strategy, sampler, cpu_textencoder, disable_nsfw, sd_controlnet_method
):
    if sd_device == "cuda" and not torch.cuda.is_available():
        return
    if device == "mps" and not torch.backends.mps.is_available():
        return

    sd_steps = 1 if sd_device == "cpu" else 30
    model = ModelManager(
        name="sd1.5",
        sd_controlnet=True,
        device=torch.device(sd_device),
        hf_access_token="",
        sd_run_local=False,
        disable_nsfw=disable_nsfw,
        sd_cpu_textencoder=cpu_textencoder,
        sd_controlnet_method=sd_controlnet_method,
    )

    controlnet_conditioning_scale = {
        "control_v11p_sd15_canny": 0.4,
        "control_v11p_sd15_openpose": 0.4,
        "control_v11p_sd15_inpaint": 1.0,
        "control_v11f1p_sd15_depth": 1.0,
    }[sd_controlnet_method]

    cfg = get_config(
        strategy,
        prompt="a fox sitting on a bench",
        sd_steps=sd_steps,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        controlnet_method=sd_controlnet_method,
    )
    cfg.sd_sampler = sampler

    name = f"device_{sd_device}_{sampler}_cpu_textencoder_disable_nsfw"

    assert_equal(
        model,
        cfg,
        f"sd_controlnet_{sd_controlnet_method}_{name}.png",
        img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
        mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
        fx=1.2,
        fy=1.2,
    )


@pytest.mark.parametrize("sd_device", ["cuda", "mps"])
@pytest.mark.parametrize("sampler", [SDSampler.uni_pc])
def test_local_file_path(sd_device, sampler):
    if sd_device == "cuda" and not torch.cuda.is_available():
        return
    if device == "mps" and not torch.backends.mps.is_available():
        return

    sd_steps = 1 if sd_device == "cpu" else 30
    model = ModelManager(
        name="sd1.5",
        sd_controlnet=True,
        device=torch.device(sd_device),
        hf_access_token="",
        sd_run_local=False,
        disable_nsfw=True,
        sd_cpu_textencoder=False,
        cpu_offload=True,
        sd_local_model_path="/Users/cwq/data/models/sd-v1-5-inpainting.ckpt",
        sd_controlnet_method="control_v11p_sd15_canny",
    )
    cfg = get_config(
        HDStrategy.ORIGINAL,
        prompt="a fox sitting on a bench",
        sd_steps=sd_steps,
        controlnet_method="control_v11p_sd15_canny",
    )
    cfg.sd_sampler = sampler

    name = f"device_{sd_device}_{sampler}"

    assert_equal(
        model,
        cfg,
        f"sd_controlnet_canny_local_model_{name}.png",
        img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
        mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
    )


@pytest.mark.parametrize("sd_device", ["cuda", "mps"])
@pytest.mark.parametrize("sampler", [SDSampler.uni_pc])
def test_local_file_path_controlnet_native_inpainting(sd_device, sampler):
    if sd_device == "cuda" and not torch.cuda.is_available():
        return
    if device == "mps" and not torch.backends.mps.is_available():
        return

    sd_steps = 1 if sd_device == "cpu" else 30
    model = ModelManager(
        name="sd1.5",
        sd_controlnet=True,
        device=torch.device(sd_device),
        hf_access_token="",
        sd_run_local=False,
        disable_nsfw=True,
        sd_cpu_textencoder=False,
        cpu_offload=True,
        sd_local_model_path="/Users/cwq/data/models/v1-5-pruned-emaonly.safetensors",
        sd_controlnet_method="control_v11p_sd15_inpaint",
    )
    cfg = get_config(
        HDStrategy.ORIGINAL,
        prompt="a fox sitting on a bench",
        sd_steps=sd_steps,
        controlnet_conditioning_scale=1.0,
        sd_strength=1.0,
        controlnet_method="control_v11p_sd15_inpaint",
    )
    cfg.sd_sampler = sampler

    name = f"device_{sd_device}_{sampler}"

    assert_equal(
        model,
        cfg,
        f"sd_controlnet_local_native_{name}.png",
        img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
        mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
    )


@pytest.mark.parametrize("sd_device", ["cuda", "mps"])
@pytest.mark.parametrize("sampler", [SDSampler.uni_pc])
def test_controlnet_switch(sd_device, sampler):
    if sd_device == "cuda" and not torch.cuda.is_available():
        return
    if device == "mps" and not torch.backends.mps.is_available():
        return

    sd_steps = 1 if sd_device == "cpu" else 30
    model = ModelManager(
        name="sd1.5",
        sd_controlnet=True,
        device=torch.device(sd_device),
        hf_access_token="",
        sd_run_local=False,
        disable_nsfw=True,
        sd_cpu_textencoder=False,
        cpu_offload=True,
        sd_controlnet_method="control_v11p_sd15_canny",
    )
    cfg = get_config(
        HDStrategy.ORIGINAL,
        prompt="a fox sitting on a bench",
        sd_steps=sd_steps,
        controlnet_method="control_v11p_sd15_inpaint",
    )
    cfg.sd_sampler = sampler

    name = f"device_{sd_device}_{sampler}"

    assert_equal(
        model,
        cfg,
        f"sd_controlnet_switch_to_inpaint_local_model_{name}.png",
        img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
        mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
    )