|
import math |
|
import random |
|
from typing import Any |
|
|
|
import torch |
|
import numpy as np |
|
import collections |
|
from itertools import repeat |
|
|
|
from diffusers import ( |
|
DDIMScheduler, |
|
PNDMScheduler, |
|
LMSDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
DPMSolverMultistepScheduler, |
|
UniPCMultistepScheduler, |
|
) |
|
|
|
from lama_cleaner.schema import SDSampler |
|
from torch import conv2d, conv_transpose2d |
|
|
|
|
|
def make_beta_schedule( |
|
device, schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3 |
|
): |
|
if schedule == "linear": |
|
betas = ( |
|
torch.linspace( |
|
linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64 |
|
) |
|
** 2 |
|
) |
|
|
|
elif schedule == "cosine": |
|
timesteps = ( |
|
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s |
|
).to(device) |
|
alphas = timesteps / (1 + cosine_s) * np.pi / 2 |
|
alphas = torch.cos(alphas).pow(2).to(device) |
|
alphas = alphas / alphas[0] |
|
betas = 1 - alphas[1:] / alphas[:-1] |
|
betas = np.clip(betas, a_min=0, a_max=0.999) |
|
|
|
elif schedule == "sqrt_linear": |
|
betas = torch.linspace( |
|
linear_start, linear_end, n_timestep, dtype=torch.float64 |
|
) |
|
elif schedule == "sqrt": |
|
betas = ( |
|
torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) |
|
** 0.5 |
|
) |
|
else: |
|
raise ValueError(f"schedule '{schedule}' unknown.") |
|
return betas.numpy() |
|
|
|
|
|
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True): |
|
|
|
alphas = alphacums[ddim_timesteps] |
|
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist()) |
|
|
|
|
|
sigmas = eta * np.sqrt( |
|
(1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev) |
|
) |
|
if verbose: |
|
print( |
|
f"Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}" |
|
) |
|
print( |
|
f"For the chosen value of eta, which is {eta}, " |
|
f"this results in the following sigma_t schedule for ddim sampler {sigmas}" |
|
) |
|
return sigmas, alphas, alphas_prev |
|
|
|
|
|
def make_ddim_timesteps( |
|
ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True |
|
): |
|
if ddim_discr_method == "uniform": |
|
c = num_ddpm_timesteps // num_ddim_timesteps |
|
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c))) |
|
elif ddim_discr_method == "quad": |
|
ddim_timesteps = ( |
|
(np.linspace(0, np.sqrt(num_ddpm_timesteps * 0.8), num_ddim_timesteps)) ** 2 |
|
).astype(int) |
|
else: |
|
raise NotImplementedError( |
|
f'There is no ddim discretization method called "{ddim_discr_method}"' |
|
) |
|
|
|
|
|
|
|
steps_out = ddim_timesteps + 1 |
|
if verbose: |
|
print(f"Selected timesteps for ddim sampler: {steps_out}") |
|
return steps_out |
|
|
|
|
|
def noise_like(shape, device, repeat=False): |
|
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat( |
|
shape[0], *((1,) * (len(shape) - 1)) |
|
) |
|
noise = lambda: torch.randn(shape, device=device) |
|
return repeat_noise() if repeat else noise() |
|
|
|
|
|
def timestep_embedding(device, timesteps, dim, max_period=10000, repeat_only=False): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param timesteps: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an [N x dim] Tensor of positional embeddings. |
|
""" |
|
half = dim // 2 |
|
freqs = torch.exp( |
|
-math.log(max_period) |
|
* torch.arange(start=0, end=half, dtype=torch.float32) |
|
/ half |
|
).to(device=device) |
|
|
|
args = timesteps[:, None].float() * freqs[None] |
|
|
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
return embedding |
|
|
|
|
|
|
|
|
|
|
|
def normalize_2nd_moment(x, dim=1): |
|
return ( |
|
x * (x.square().mean(dim=dim, keepdim=True) + torch.finfo(x.dtype).eps).rsqrt() |
|
) |
|
|
|
|
|
class EasyDict(dict): |
|
"""Convenience class that behaves like a dict but allows access with the attribute syntax.""" |
|
|
|
def __getattr__(self, name: str) -> Any: |
|
try: |
|
return self[name] |
|
except KeyError: |
|
raise AttributeError(name) |
|
|
|
def __setattr__(self, name: str, value: Any) -> None: |
|
self[name] = value |
|
|
|
def __delattr__(self, name: str) -> None: |
|
del self[name] |
|
|
|
|
|
def _bias_act_ref(x, b=None, dim=1, act="linear", alpha=None, gain=None, clamp=None): |
|
"""Slow reference implementation of `bias_act()` using standard TensorFlow ops.""" |
|
assert isinstance(x, torch.Tensor) |
|
assert clamp is None or clamp >= 0 |
|
spec = activation_funcs[act] |
|
alpha = float(alpha if alpha is not None else spec.def_alpha) |
|
gain = float(gain if gain is not None else spec.def_gain) |
|
clamp = float(clamp if clamp is not None else -1) |
|
|
|
|
|
if b is not None: |
|
assert isinstance(b, torch.Tensor) and b.ndim == 1 |
|
assert 0 <= dim < x.ndim |
|
assert b.shape[0] == x.shape[dim] |
|
x = x + b.reshape([-1 if i == dim else 1 for i in range(x.ndim)]) |
|
|
|
|
|
alpha = float(alpha) |
|
x = spec.func(x, alpha=alpha) |
|
|
|
|
|
gain = float(gain) |
|
if gain != 1: |
|
x = x * gain |
|
|
|
|
|
if clamp >= 0: |
|
x = x.clamp(-clamp, clamp) |
|
return x |
|
|
|
|
|
def bias_act( |
|
x, b=None, dim=1, act="linear", alpha=None, gain=None, clamp=None, impl="ref" |
|
): |
|
r"""Fused bias and activation function. |
|
|
|
Adds bias `b` to activation tensor `x`, evaluates activation function `act`, |
|
and scales the result by `gain`. Each of the steps is optional. In most cases, |
|
the fused op is considerably more efficient than performing the same calculation |
|
using standard PyTorch ops. It supports first and second order gradients, |
|
but not third order gradients. |
|
|
|
Args: |
|
x: Input activation tensor. Can be of any shape. |
|
b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type |
|
as `x`. The shape must be known, and it must match the dimension of `x` |
|
corresponding to `dim`. |
|
dim: The dimension in `x` corresponding to the elements of `b`. |
|
The value of `dim` is ignored if `b` is not specified. |
|
act: Name of the activation function to evaluate, or `"linear"` to disable. |
|
Can be e.g. `"relu"`, `"lrelu"`, `"tanh"`, `"sigmoid"`, `"swish"`, etc. |
|
See `activation_funcs` for a full list. `None` is not allowed. |
|
alpha: Shape parameter for the activation function, or `None` to use the default. |
|
gain: Scaling factor for the output tensor, or `None` to use default. |
|
See `activation_funcs` for the default scaling of each activation function. |
|
If unsure, consider specifying 1. |
|
clamp: Clamp the output values to `[-clamp, +clamp]`, or `None` to disable |
|
the clamping (default). |
|
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default). |
|
|
|
Returns: |
|
Tensor of the same shape and datatype as `x`. |
|
""" |
|
assert isinstance(x, torch.Tensor) |
|
assert impl in ["ref", "cuda"] |
|
return _bias_act_ref( |
|
x=x, b=b, dim=dim, act=act, alpha=alpha, gain=gain, clamp=clamp |
|
) |
|
|
|
|
|
def _get_filter_size(f): |
|
if f is None: |
|
return 1, 1 |
|
|
|
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2] |
|
fw = f.shape[-1] |
|
fh = f.shape[0] |
|
|
|
fw = int(fw) |
|
fh = int(fh) |
|
assert fw >= 1 and fh >= 1 |
|
return fw, fh |
|
|
|
|
|
def _get_weight_shape(w): |
|
shape = [int(sz) for sz in w.shape] |
|
return shape |
|
|
|
|
|
def _parse_scaling(scaling): |
|
if isinstance(scaling, int): |
|
scaling = [scaling, scaling] |
|
assert isinstance(scaling, (list, tuple)) |
|
assert all(isinstance(x, int) for x in scaling) |
|
sx, sy = scaling |
|
assert sx >= 1 and sy >= 1 |
|
return sx, sy |
|
|
|
|
|
def _parse_padding(padding): |
|
if isinstance(padding, int): |
|
padding = [padding, padding] |
|
assert isinstance(padding, (list, tuple)) |
|
assert all(isinstance(x, int) for x in padding) |
|
if len(padding) == 2: |
|
padx, pady = padding |
|
padding = [padx, padx, pady, pady] |
|
padx0, padx1, pady0, pady1 = padding |
|
return padx0, padx1, pady0, pady1 |
|
|
|
|
|
def setup_filter( |
|
f, |
|
device=torch.device("cpu"), |
|
normalize=True, |
|
flip_filter=False, |
|
gain=1, |
|
separable=None, |
|
): |
|
r"""Convenience function to setup 2D FIR filter for `upfirdn2d()`. |
|
|
|
Args: |
|
f: Torch tensor, numpy array, or python list of the shape |
|
`[filter_height, filter_width]` (non-separable), |
|
`[filter_taps]` (separable), |
|
`[]` (impulse), or |
|
`None` (identity). |
|
device: Result device (default: cpu). |
|
normalize: Normalize the filter so that it retains the magnitude |
|
for constant input signal (DC)? (default: True). |
|
flip_filter: Flip the filter? (default: False). |
|
gain: Overall scaling factor for signal magnitude (default: 1). |
|
separable: Return a separable filter? (default: select automatically). |
|
|
|
Returns: |
|
Float32 tensor of the shape |
|
`[filter_height, filter_width]` (non-separable) or |
|
`[filter_taps]` (separable). |
|
""" |
|
|
|
if f is None: |
|
f = 1 |
|
f = torch.as_tensor(f, dtype=torch.float32) |
|
assert f.ndim in [0, 1, 2] |
|
assert f.numel() > 0 |
|
if f.ndim == 0: |
|
f = f[np.newaxis] |
|
|
|
|
|
if separable is None: |
|
separable = f.ndim == 1 and f.numel() >= 8 |
|
if f.ndim == 1 and not separable: |
|
f = f.ger(f) |
|
assert f.ndim == (1 if separable else 2) |
|
|
|
|
|
if normalize: |
|
f /= f.sum() |
|
if flip_filter: |
|
f = f.flip(list(range(f.ndim))) |
|
f = f * (gain ** (f.ndim / 2)) |
|
f = f.to(device=device) |
|
return f |
|
|
|
|
|
def _ntuple(n): |
|
def parse(x): |
|
if isinstance(x, collections.abc.Iterable): |
|
return x |
|
return tuple(repeat(x, n)) |
|
|
|
return parse |
|
|
|
|
|
to_2tuple = _ntuple(2) |
|
|
|
activation_funcs = { |
|
"linear": EasyDict( |
|
func=lambda x, **_: x, |
|
def_alpha=0, |
|
def_gain=1, |
|
cuda_idx=1, |
|
ref="", |
|
has_2nd_grad=False, |
|
), |
|
"relu": EasyDict( |
|
func=lambda x, **_: torch.nn.functional.relu(x), |
|
def_alpha=0, |
|
def_gain=np.sqrt(2), |
|
cuda_idx=2, |
|
ref="y", |
|
has_2nd_grad=False, |
|
), |
|
"lrelu": EasyDict( |
|
func=lambda x, alpha, **_: torch.nn.functional.leaky_relu(x, alpha), |
|
def_alpha=0.2, |
|
def_gain=np.sqrt(2), |
|
cuda_idx=3, |
|
ref="y", |
|
has_2nd_grad=False, |
|
), |
|
"tanh": EasyDict( |
|
func=lambda x, **_: torch.tanh(x), |
|
def_alpha=0, |
|
def_gain=1, |
|
cuda_idx=4, |
|
ref="y", |
|
has_2nd_grad=True, |
|
), |
|
"sigmoid": EasyDict( |
|
func=lambda x, **_: torch.sigmoid(x), |
|
def_alpha=0, |
|
def_gain=1, |
|
cuda_idx=5, |
|
ref="y", |
|
has_2nd_grad=True, |
|
), |
|
"elu": EasyDict( |
|
func=lambda x, **_: torch.nn.functional.elu(x), |
|
def_alpha=0, |
|
def_gain=1, |
|
cuda_idx=6, |
|
ref="y", |
|
has_2nd_grad=True, |
|
), |
|
"selu": EasyDict( |
|
func=lambda x, **_: torch.nn.functional.selu(x), |
|
def_alpha=0, |
|
def_gain=1, |
|
cuda_idx=7, |
|
ref="y", |
|
has_2nd_grad=True, |
|
), |
|
"softplus": EasyDict( |
|
func=lambda x, **_: torch.nn.functional.softplus(x), |
|
def_alpha=0, |
|
def_gain=1, |
|
cuda_idx=8, |
|
ref="y", |
|
has_2nd_grad=True, |
|
), |
|
"swish": EasyDict( |
|
func=lambda x, **_: torch.sigmoid(x) * x, |
|
def_alpha=0, |
|
def_gain=np.sqrt(2), |
|
cuda_idx=9, |
|
ref="x", |
|
has_2nd_grad=True, |
|
), |
|
} |
|
|
|
|
|
def upfirdn2d(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1, impl="cuda"): |
|
r"""Pad, upsample, filter, and downsample a batch of 2D images. |
|
|
|
Performs the following sequence of operations for each channel: |
|
|
|
1. Upsample the image by inserting N-1 zeros after each pixel (`up`). |
|
|
|
2. Pad the image with the specified number of zeros on each side (`padding`). |
|
Negative padding corresponds to cropping the image. |
|
|
|
3. Convolve the image with the specified 2D FIR filter (`f`), shrinking it |
|
so that the footprint of all output pixels lies within the input image. |
|
|
|
4. Downsample the image by keeping every Nth pixel (`down`). |
|
|
|
This sequence of operations bears close resemblance to scipy.signal.upfirdn(). |
|
The fused op is considerably more efficient than performing the same calculation |
|
using standard PyTorch ops. It supports gradients of arbitrary order. |
|
|
|
Args: |
|
x: Float32/float64/float16 input tensor of the shape |
|
`[batch_size, num_channels, in_height, in_width]`. |
|
f: Float32 FIR filter of the shape |
|
`[filter_height, filter_width]` (non-separable), |
|
`[filter_taps]` (separable), or |
|
`None` (identity). |
|
up: Integer upsampling factor. Can be a single int or a list/tuple |
|
`[x, y]` (default: 1). |
|
down: Integer downsampling factor. Can be a single int or a list/tuple |
|
`[x, y]` (default: 1). |
|
padding: Padding with respect to the upsampled image. Can be a single number |
|
or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]` |
|
(default: 0). |
|
flip_filter: False = convolution, True = correlation (default: False). |
|
gain: Overall scaling factor for signal magnitude (default: 1). |
|
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`). |
|
|
|
Returns: |
|
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`. |
|
""" |
|
|
|
|
|
return _upfirdn2d_ref( |
|
x, f, up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain |
|
) |
|
|
|
|
|
def _upfirdn2d_ref(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1): |
|
"""Slow reference implementation of `upfirdn2d()` using standard PyTorch ops.""" |
|
|
|
assert isinstance(x, torch.Tensor) and x.ndim == 4 |
|
if f is None: |
|
f = torch.ones([1, 1], dtype=torch.float32, device=x.device) |
|
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2] |
|
assert not f.requires_grad |
|
batch_size, num_channels, in_height, in_width = x.shape |
|
|
|
|
|
|
|
upx, upy = up, up |
|
downx, downy = down, down |
|
|
|
|
|
padx0, padx1, pady0, pady1 = padding[0], padding[1], padding[2], padding[3] |
|
|
|
|
|
x = x.reshape([batch_size, num_channels, in_height, 1, in_width, 1]) |
|
x = torch.nn.functional.pad(x, [0, upx - 1, 0, 0, 0, upy - 1]) |
|
x = x.reshape([batch_size, num_channels, in_height * upy, in_width * upx]) |
|
|
|
|
|
x = torch.nn.functional.pad( |
|
x, [max(padx0, 0), max(padx1, 0), max(pady0, 0), max(pady1, 0)] |
|
) |
|
x = x[ |
|
:, |
|
:, |
|
max(-pady0, 0) : x.shape[2] - max(-pady1, 0), |
|
max(-padx0, 0) : x.shape[3] - max(-padx1, 0), |
|
] |
|
|
|
|
|
f = f * (gain ** (f.ndim / 2)) |
|
f = f.to(x.dtype) |
|
if not flip_filter: |
|
f = f.flip(list(range(f.ndim))) |
|
|
|
|
|
f = f[np.newaxis, np.newaxis].repeat([num_channels, 1] + [1] * f.ndim) |
|
if f.ndim == 4: |
|
x = conv2d(input=x, weight=f, groups=num_channels) |
|
else: |
|
x = conv2d(input=x, weight=f.unsqueeze(2), groups=num_channels) |
|
x = conv2d(input=x, weight=f.unsqueeze(3), groups=num_channels) |
|
|
|
|
|
x = x[:, :, ::downy, ::downx] |
|
return x |
|
|
|
|
|
def downsample2d(x, f, down=2, padding=0, flip_filter=False, gain=1, impl="cuda"): |
|
r"""Downsample a batch of 2D images using the given 2D FIR filter. |
|
|
|
By default, the result is padded so that its shape is a fraction of the input. |
|
User-specified padding is applied on top of that, with negative values |
|
indicating cropping. Pixels outside the image are assumed to be zero. |
|
|
|
Args: |
|
x: Float32/float64/float16 input tensor of the shape |
|
`[batch_size, num_channels, in_height, in_width]`. |
|
f: Float32 FIR filter of the shape |
|
`[filter_height, filter_width]` (non-separable), |
|
`[filter_taps]` (separable), or |
|
`None` (identity). |
|
down: Integer downsampling factor. Can be a single int or a list/tuple |
|
`[x, y]` (default: 1). |
|
padding: Padding with respect to the input. Can be a single number or a |
|
list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]` |
|
(default: 0). |
|
flip_filter: False = convolution, True = correlation (default: False). |
|
gain: Overall scaling factor for signal magnitude (default: 1). |
|
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`). |
|
|
|
Returns: |
|
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`. |
|
""" |
|
downx, downy = _parse_scaling(down) |
|
|
|
padx0, padx1, pady0, pady1 = padding, padding, padding, padding |
|
|
|
fw, fh = _get_filter_size(f) |
|
p = [ |
|
padx0 + (fw - downx + 1) // 2, |
|
padx1 + (fw - downx) // 2, |
|
pady0 + (fh - downy + 1) // 2, |
|
pady1 + (fh - downy) // 2, |
|
] |
|
return upfirdn2d( |
|
x, f, down=down, padding=p, flip_filter=flip_filter, gain=gain, impl=impl |
|
) |
|
|
|
|
|
def upsample2d(x, f, up=2, padding=0, flip_filter=False, gain=1, impl="cuda"): |
|
r"""Upsample a batch of 2D images using the given 2D FIR filter. |
|
|
|
By default, the result is padded so that its shape is a multiple of the input. |
|
User-specified padding is applied on top of that, with negative values |
|
indicating cropping. Pixels outside the image are assumed to be zero. |
|
|
|
Args: |
|
x: Float32/float64/float16 input tensor of the shape |
|
`[batch_size, num_channels, in_height, in_width]`. |
|
f: Float32 FIR filter of the shape |
|
`[filter_height, filter_width]` (non-separable), |
|
`[filter_taps]` (separable), or |
|
`None` (identity). |
|
up: Integer upsampling factor. Can be a single int or a list/tuple |
|
`[x, y]` (default: 1). |
|
padding: Padding with respect to the output. Can be a single number or a |
|
list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]` |
|
(default: 0). |
|
flip_filter: False = convolution, True = correlation (default: False). |
|
gain: Overall scaling factor for signal magnitude (default: 1). |
|
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`). |
|
|
|
Returns: |
|
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`. |
|
""" |
|
upx, upy = _parse_scaling(up) |
|
|
|
padx0, padx1, pady0, pady1 = _parse_padding(padding) |
|
|
|
fw, fh = _get_filter_size(f) |
|
p = [ |
|
padx0 + (fw + upx - 1) // 2, |
|
padx1 + (fw - upx) // 2, |
|
pady0 + (fh + upy - 1) // 2, |
|
pady1 + (fh - upy) // 2, |
|
] |
|
return upfirdn2d( |
|
x, |
|
f, |
|
up=up, |
|
padding=p, |
|
flip_filter=flip_filter, |
|
gain=gain * upx * upy, |
|
impl=impl, |
|
) |
|
|
|
|
|
class MinibatchStdLayer(torch.nn.Module): |
|
def __init__(self, group_size, num_channels=1): |
|
super().__init__() |
|
self.group_size = group_size |
|
self.num_channels = num_channels |
|
|
|
def forward(self, x): |
|
N, C, H, W = x.shape |
|
G = ( |
|
torch.min(torch.as_tensor(self.group_size), torch.as_tensor(N)) |
|
if self.group_size is not None |
|
else N |
|
) |
|
F = self.num_channels |
|
c = C // F |
|
|
|
y = x.reshape( |
|
G, -1, F, c, H, W |
|
) |
|
y = y - y.mean(dim=0) |
|
y = y.square().mean(dim=0) |
|
y = (y + 1e-8).sqrt() |
|
y = y.mean(dim=[2, 3, 4]) |
|
y = y.reshape(-1, F, 1, 1) |
|
y = y.repeat(G, 1, H, W) |
|
x = torch.cat([x, y], dim=1) |
|
return x |
|
|
|
|
|
class FullyConnectedLayer(torch.nn.Module): |
|
def __init__( |
|
self, |
|
in_features, |
|
out_features, |
|
bias=True, |
|
activation="linear", |
|
lr_multiplier=1, |
|
bias_init=0, |
|
): |
|
super().__init__() |
|
self.weight = torch.nn.Parameter( |
|
torch.randn([out_features, in_features]) / lr_multiplier |
|
) |
|
self.bias = ( |
|
torch.nn.Parameter(torch.full([out_features], np.float32(bias_init))) |
|
if bias |
|
else None |
|
) |
|
self.activation = activation |
|
|
|
self.weight_gain = lr_multiplier / np.sqrt(in_features) |
|
self.bias_gain = lr_multiplier |
|
|
|
def forward(self, x): |
|
w = self.weight * self.weight_gain |
|
b = self.bias |
|
if b is not None and self.bias_gain != 1: |
|
b = b * self.bias_gain |
|
|
|
if self.activation == "linear" and b is not None: |
|
|
|
x = x.matmul(w.t()) |
|
out = x + b.reshape([-1 if i == x.ndim - 1 else 1 for i in range(x.ndim)]) |
|
else: |
|
x = x.matmul(w.t()) |
|
out = bias_act(x, b, act=self.activation, dim=x.ndim - 1) |
|
return out |
|
|
|
|
|
def _conv2d_wrapper( |
|
x, w, stride=1, padding=0, groups=1, transpose=False, flip_weight=True |
|
): |
|
"""Wrapper for the underlying `conv2d()` and `conv_transpose2d()` implementations.""" |
|
out_channels, in_channels_per_group, kh, kw = _get_weight_shape(w) |
|
|
|
|
|
if ( |
|
not flip_weight |
|
): |
|
w = w.flip([2, 3]) |
|
|
|
|
|
|
|
if ( |
|
kw == 1 |
|
and kh == 1 |
|
and stride == 1 |
|
and padding in [0, [0, 0], (0, 0)] |
|
and not transpose |
|
): |
|
if x.stride()[1] == 1 and min(out_channels, in_channels_per_group) < 64: |
|
if out_channels <= 4 and groups == 1: |
|
in_shape = x.shape |
|
x = w.squeeze(3).squeeze(2) @ x.reshape( |
|
[in_shape[0], in_channels_per_group, -1] |
|
) |
|
x = x.reshape([in_shape[0], out_channels, in_shape[2], in_shape[3]]) |
|
else: |
|
x = x.to(memory_format=torch.contiguous_format) |
|
w = w.to(memory_format=torch.contiguous_format) |
|
x = conv2d(x, w, groups=groups) |
|
return x.to(memory_format=torch.channels_last) |
|
|
|
|
|
op = conv_transpose2d if transpose else conv2d |
|
return op(x, w, stride=stride, padding=padding, groups=groups) |
|
|
|
|
|
def conv2d_resample( |
|
x, w, f=None, up=1, down=1, padding=0, groups=1, flip_weight=True, flip_filter=False |
|
): |
|
r"""2D convolution with optional up/downsampling. |
|
|
|
Padding is performed only once at the beginning, not between the operations. |
|
|
|
Args: |
|
x: Input tensor of shape |
|
`[batch_size, in_channels, in_height, in_width]`. |
|
w: Weight tensor of shape |
|
`[out_channels, in_channels//groups, kernel_height, kernel_width]`. |
|
f: Low-pass filter for up/downsampling. Must be prepared beforehand by |
|
calling setup_filter(). None = identity (default). |
|
up: Integer upsampling factor (default: 1). |
|
down: Integer downsampling factor (default: 1). |
|
padding: Padding with respect to the upsampled image. Can be a single number |
|
or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]` |
|
(default: 0). |
|
groups: Split input channels into N groups (default: 1). |
|
flip_weight: False = convolution, True = correlation (default: True). |
|
flip_filter: False = convolution, True = correlation (default: False). |
|
|
|
Returns: |
|
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`. |
|
""" |
|
|
|
assert isinstance(x, torch.Tensor) and (x.ndim == 4) |
|
assert isinstance(w, torch.Tensor) and (w.ndim == 4) and (w.dtype == x.dtype) |
|
assert f is None or (isinstance(f, torch.Tensor) and f.ndim in [1, 2]) |
|
assert isinstance(up, int) and (up >= 1) |
|
assert isinstance(down, int) and (down >= 1) |
|
|
|
out_channels, in_channels_per_group, kh, kw = _get_weight_shape(w) |
|
fw, fh = _get_filter_size(f) |
|
|
|
px0, px1, py0, py1 = padding, padding, padding, padding |
|
|
|
|
|
if up > 1: |
|
px0 += (fw + up - 1) // 2 |
|
px1 += (fw - up) // 2 |
|
py0 += (fh + up - 1) // 2 |
|
py1 += (fh - up) // 2 |
|
if down > 1: |
|
px0 += (fw - down + 1) // 2 |
|
px1 += (fw - down) // 2 |
|
py0 += (fh - down + 1) // 2 |
|
py1 += (fh - down) // 2 |
|
|
|
|
|
if kw == 1 and kh == 1 and (down > 1 and up == 1): |
|
x = upfirdn2d( |
|
x=x, f=f, down=down, padding=[px0, px1, py0, py1], flip_filter=flip_filter |
|
) |
|
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight) |
|
return x |
|
|
|
|
|
if kw == 1 and kh == 1 and (up > 1 and down == 1): |
|
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight) |
|
x = upfirdn2d( |
|
x=x, |
|
f=f, |
|
up=up, |
|
padding=[px0, px1, py0, py1], |
|
gain=up ** 2, |
|
flip_filter=flip_filter, |
|
) |
|
return x |
|
|
|
|
|
if down > 1 and up == 1: |
|
x = upfirdn2d(x=x, f=f, padding=[px0, px1, py0, py1], flip_filter=flip_filter) |
|
x = _conv2d_wrapper( |
|
x=x, w=w, stride=down, groups=groups, flip_weight=flip_weight |
|
) |
|
return x |
|
|
|
|
|
if up > 1: |
|
if groups == 1: |
|
w = w.transpose(0, 1) |
|
else: |
|
w = w.reshape(groups, out_channels // groups, in_channels_per_group, kh, kw) |
|
w = w.transpose(1, 2) |
|
w = w.reshape( |
|
groups * in_channels_per_group, out_channels // groups, kh, kw |
|
) |
|
px0 -= kw - 1 |
|
px1 -= kw - up |
|
py0 -= kh - 1 |
|
py1 -= kh - up |
|
pxt = max(min(-px0, -px1), 0) |
|
pyt = max(min(-py0, -py1), 0) |
|
x = _conv2d_wrapper( |
|
x=x, |
|
w=w, |
|
stride=up, |
|
padding=[pyt, pxt], |
|
groups=groups, |
|
transpose=True, |
|
flip_weight=(not flip_weight), |
|
) |
|
x = upfirdn2d( |
|
x=x, |
|
f=f, |
|
padding=[px0 + pxt, px1 + pxt, py0 + pyt, py1 + pyt], |
|
gain=up ** 2, |
|
flip_filter=flip_filter, |
|
) |
|
if down > 1: |
|
x = upfirdn2d(x=x, f=f, down=down, flip_filter=flip_filter) |
|
return x |
|
|
|
|
|
if up == 1 and down == 1: |
|
if px0 == px1 and py0 == py1 and px0 >= 0 and py0 >= 0: |
|
return _conv2d_wrapper( |
|
x=x, w=w, padding=[py0, px0], groups=groups, flip_weight=flip_weight |
|
) |
|
|
|
|
|
x = upfirdn2d( |
|
x=x, |
|
f=(f if up > 1 else None), |
|
up=up, |
|
padding=[px0, px1, py0, py1], |
|
gain=up ** 2, |
|
flip_filter=flip_filter, |
|
) |
|
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight) |
|
if down > 1: |
|
x = upfirdn2d(x=x, f=f, down=down, flip_filter=flip_filter) |
|
return x |
|
|
|
|
|
class Conv2dLayer(torch.nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
bias=True, |
|
activation="linear", |
|
up=1, |
|
down=1, |
|
resample_filter=[ |
|
1, |
|
3, |
|
3, |
|
1, |
|
], |
|
conv_clamp=None, |
|
channels_last=False, |
|
trainable=True, |
|
): |
|
super().__init__() |
|
self.activation = activation |
|
self.up = up |
|
self.down = down |
|
self.register_buffer("resample_filter", setup_filter(resample_filter)) |
|
self.conv_clamp = conv_clamp |
|
self.padding = kernel_size // 2 |
|
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2)) |
|
self.act_gain = activation_funcs[activation].def_gain |
|
|
|
memory_format = ( |
|
torch.channels_last if channels_last else torch.contiguous_format |
|
) |
|
weight = torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to( |
|
memory_format=memory_format |
|
) |
|
bias = torch.zeros([out_channels]) if bias else None |
|
if trainable: |
|
self.weight = torch.nn.Parameter(weight) |
|
self.bias = torch.nn.Parameter(bias) if bias is not None else None |
|
else: |
|
self.register_buffer("weight", weight) |
|
if bias is not None: |
|
self.register_buffer("bias", bias) |
|
else: |
|
self.bias = None |
|
|
|
def forward(self, x, gain=1): |
|
w = self.weight * self.weight_gain |
|
x = conv2d_resample( |
|
x=x, |
|
w=w, |
|
f=self.resample_filter, |
|
up=self.up, |
|
down=self.down, |
|
padding=self.padding, |
|
) |
|
|
|
act_gain = self.act_gain * gain |
|
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None |
|
out = bias_act( |
|
x, self.bias, act=self.activation, gain=act_gain, clamp=act_clamp |
|
) |
|
return out |
|
|
|
|
|
def torch_gc(): |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
torch.cuda.ipc_collect() |
|
|
|
|
|
def set_seed(seed: int): |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
|
|
def get_scheduler(sd_sampler, scheduler_config): |
|
if sd_sampler == SDSampler.ddim: |
|
return DDIMScheduler.from_config(scheduler_config) |
|
elif sd_sampler == SDSampler.pndm: |
|
return PNDMScheduler.from_config(scheduler_config) |
|
elif sd_sampler == SDSampler.k_lms: |
|
return LMSDiscreteScheduler.from_config(scheduler_config) |
|
elif sd_sampler == SDSampler.k_euler: |
|
return EulerDiscreteScheduler.from_config(scheduler_config) |
|
elif sd_sampler == SDSampler.k_euler_a: |
|
return EulerAncestralDiscreteScheduler.from_config(scheduler_config) |
|
elif sd_sampler == SDSampler.dpm_plus_plus: |
|
return DPMSolverMultistepScheduler.from_config(scheduler_config) |
|
elif sd_sampler == SDSampler.uni_pc: |
|
return UniPCMultistepScheduler.from_config(scheduler_config) |
|
else: |
|
raise ValueError(sd_sampler) |
|
|