|
import PIL.Image |
|
import cv2 |
|
import torch |
|
from loguru import logger |
|
|
|
from lama_cleaner.model.base import DiffusionInpaintModel |
|
from lama_cleaner.model.utils import set_seed |
|
from lama_cleaner.schema import Config |
|
|
|
|
|
class InstructPix2Pix(DiffusionInpaintModel): |
|
name = "instruct_pix2pix" |
|
pad_mod = 8 |
|
min_size = 512 |
|
|
|
def init_model(self, device: torch.device, **kwargs): |
|
from diffusers import StableDiffusionInstructPix2PixPipeline |
|
fp16 = not kwargs.get('no_half', False) |
|
|
|
model_kwargs = {"local_files_only": kwargs.get('local_files_only', False)} |
|
if kwargs['disable_nsfw'] or kwargs.get('cpu_offload', False): |
|
logger.info("Disable Stable Diffusion Model NSFW checker") |
|
model_kwargs.update(dict( |
|
safety_checker=None, |
|
feature_extractor=None, |
|
requires_safety_checker=False |
|
)) |
|
|
|
use_gpu = device == torch.device('cuda') and torch.cuda.is_available() |
|
torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32 |
|
self.model = StableDiffusionInstructPix2PixPipeline.from_pretrained( |
|
"timbrooks/instruct-pix2pix", |
|
revision="fp16" if use_gpu and fp16 else "main", |
|
torch_dtype=torch_dtype, |
|
**model_kwargs |
|
) |
|
|
|
self.model.enable_attention_slicing() |
|
if kwargs.get('enable_xformers', False): |
|
self.model.enable_xformers_memory_efficient_attention() |
|
|
|
if kwargs.get('cpu_offload', False) and use_gpu: |
|
logger.info("Enable sequential cpu offload") |
|
self.model.enable_sequential_cpu_offload(gpu_id=0) |
|
else: |
|
self.model = self.model.to(device) |
|
|
|
def forward(self, image, mask, config: Config): |
|
"""Input image and output image have same size |
|
image: [H, W, C] RGB |
|
mask: [H, W, 1] 255 means area to repaint |
|
return: BGR IMAGE |
|
edit = pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7).images[0] |
|
""" |
|
output = self.model( |
|
image=PIL.Image.fromarray(image), |
|
prompt=config.prompt, |
|
negative_prompt=config.negative_prompt, |
|
num_inference_steps=config.p2p_steps, |
|
image_guidance_scale=config.p2p_image_guidance_scale, |
|
guidance_scale=config.p2p_guidance_scale, |
|
output_type="np.array", |
|
generator=torch.manual_seed(config.sd_seed) |
|
).images[0] |
|
|
|
output = (output * 255).round().astype("uint8") |
|
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) |
|
return output |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@staticmethod |
|
def is_downloaded() -> bool: |
|
|
|
return True |
|
|