|
import os |
|
|
|
from lama_cleaner.const import SD_CONTROLNET_CHOICES |
|
|
|
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" |
|
from pathlib import Path |
|
|
|
import pytest |
|
import torch |
|
|
|
from lama_cleaner.model_manager import ModelManager |
|
from lama_cleaner.schema import HDStrategy, SDSampler |
|
from lama_cleaner.tests.test_model import get_config, assert_equal |
|
|
|
current_dir = Path(__file__).parent.absolute().resolve() |
|
save_dir = current_dir / "result" |
|
save_dir.mkdir(exist_ok=True, parents=True) |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
device = torch.device(device) |
|
|
|
|
|
@pytest.mark.parametrize("sd_device", ["cuda", "mps"]) |
|
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL]) |
|
@pytest.mark.parametrize("sampler", [SDSampler.uni_pc]) |
|
@pytest.mark.parametrize("cpu_textencoder", [True]) |
|
@pytest.mark.parametrize("disable_nsfw", [True]) |
|
@pytest.mark.parametrize("sd_controlnet_method", SD_CONTROLNET_CHOICES) |
|
def test_runway_sd_1_5( |
|
sd_device, strategy, sampler, cpu_textencoder, disable_nsfw, sd_controlnet_method |
|
): |
|
if sd_device == "cuda" and not torch.cuda.is_available(): |
|
return |
|
if device == "mps" and not torch.backends.mps.is_available(): |
|
return |
|
|
|
sd_steps = 1 if sd_device == "cpu" else 30 |
|
model = ModelManager( |
|
name="sd1.5", |
|
sd_controlnet=True, |
|
device=torch.device(sd_device), |
|
hf_access_token="", |
|
sd_run_local=False, |
|
disable_nsfw=disable_nsfw, |
|
sd_cpu_textencoder=cpu_textencoder, |
|
sd_controlnet_method=sd_controlnet_method, |
|
) |
|
|
|
controlnet_conditioning_scale = { |
|
"control_v11p_sd15_canny": 0.4, |
|
"control_v11p_sd15_openpose": 0.4, |
|
"control_v11p_sd15_inpaint": 1.0, |
|
"control_v11f1p_sd15_depth": 1.0, |
|
}[sd_controlnet_method] |
|
|
|
cfg = get_config( |
|
strategy, |
|
prompt="a fox sitting on a bench", |
|
sd_steps=sd_steps, |
|
controlnet_conditioning_scale=controlnet_conditioning_scale, |
|
controlnet_method=sd_controlnet_method, |
|
) |
|
cfg.sd_sampler = sampler |
|
|
|
name = f"device_{sd_device}_{sampler}_cpu_textencoder_disable_nsfw" |
|
|
|
assert_equal( |
|
model, |
|
cfg, |
|
f"sd_controlnet_{sd_controlnet_method}_{name}.png", |
|
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png", |
|
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png", |
|
fx=1.2, |
|
fy=1.2, |
|
) |
|
|
|
|
|
@pytest.mark.parametrize("sd_device", ["cuda", "mps"]) |
|
@pytest.mark.parametrize("sampler", [SDSampler.uni_pc]) |
|
def test_local_file_path(sd_device, sampler): |
|
if sd_device == "cuda" and not torch.cuda.is_available(): |
|
return |
|
if device == "mps" and not torch.backends.mps.is_available(): |
|
return |
|
|
|
sd_steps = 1 if sd_device == "cpu" else 30 |
|
model = ModelManager( |
|
name="sd1.5", |
|
sd_controlnet=True, |
|
device=torch.device(sd_device), |
|
hf_access_token="", |
|
sd_run_local=False, |
|
disable_nsfw=True, |
|
sd_cpu_textencoder=False, |
|
cpu_offload=True, |
|
sd_local_model_path="/Users/cwq/data/models/sd-v1-5-inpainting.ckpt", |
|
sd_controlnet_method="control_v11p_sd15_canny", |
|
) |
|
cfg = get_config( |
|
HDStrategy.ORIGINAL, |
|
prompt="a fox sitting on a bench", |
|
sd_steps=sd_steps, |
|
controlnet_method="control_v11p_sd15_canny", |
|
) |
|
cfg.sd_sampler = sampler |
|
|
|
name = f"device_{sd_device}_{sampler}" |
|
|
|
assert_equal( |
|
model, |
|
cfg, |
|
f"sd_controlnet_canny_local_model_{name}.png", |
|
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png", |
|
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png", |
|
) |
|
|
|
|
|
@pytest.mark.parametrize("sd_device", ["cuda", "mps"]) |
|
@pytest.mark.parametrize("sampler", [SDSampler.uni_pc]) |
|
def test_local_file_path_controlnet_native_inpainting(sd_device, sampler): |
|
if sd_device == "cuda" and not torch.cuda.is_available(): |
|
return |
|
if device == "mps" and not torch.backends.mps.is_available(): |
|
return |
|
|
|
sd_steps = 1 if sd_device == "cpu" else 30 |
|
model = ModelManager( |
|
name="sd1.5", |
|
sd_controlnet=True, |
|
device=torch.device(sd_device), |
|
hf_access_token="", |
|
sd_run_local=False, |
|
disable_nsfw=True, |
|
sd_cpu_textencoder=False, |
|
cpu_offload=True, |
|
sd_local_model_path="/Users/cwq/data/models/v1-5-pruned-emaonly.safetensors", |
|
sd_controlnet_method="control_v11p_sd15_inpaint", |
|
) |
|
cfg = get_config( |
|
HDStrategy.ORIGINAL, |
|
prompt="a fox sitting on a bench", |
|
sd_steps=sd_steps, |
|
controlnet_conditioning_scale=1.0, |
|
sd_strength=1.0, |
|
controlnet_method="control_v11p_sd15_inpaint", |
|
) |
|
cfg.sd_sampler = sampler |
|
|
|
name = f"device_{sd_device}_{sampler}" |
|
|
|
assert_equal( |
|
model, |
|
cfg, |
|
f"sd_controlnet_local_native_{name}.png", |
|
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png", |
|
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png", |
|
) |
|
|
|
|
|
@pytest.mark.parametrize("sd_device", ["cuda", "mps"]) |
|
@pytest.mark.parametrize("sampler", [SDSampler.uni_pc]) |
|
def test_controlnet_switch(sd_device, sampler): |
|
if sd_device == "cuda" and not torch.cuda.is_available(): |
|
return |
|
if device == "mps" and not torch.backends.mps.is_available(): |
|
return |
|
|
|
sd_steps = 1 if sd_device == "cpu" else 30 |
|
model = ModelManager( |
|
name="sd1.5", |
|
sd_controlnet=True, |
|
device=torch.device(sd_device), |
|
hf_access_token="", |
|
sd_run_local=False, |
|
disable_nsfw=True, |
|
sd_cpu_textencoder=False, |
|
cpu_offload=True, |
|
sd_controlnet_method="control_v11p_sd15_canny", |
|
) |
|
cfg = get_config( |
|
HDStrategy.ORIGINAL, |
|
prompt="a fox sitting on a bench", |
|
sd_steps=sd_steps, |
|
controlnet_method="control_v11p_sd15_inpaint", |
|
) |
|
cfg.sd_sampler = sampler |
|
|
|
name = f"device_{sd_device}_{sampler}" |
|
|
|
assert_equal( |
|
model, |
|
cfg, |
|
f"sd_controlnet_switch_to_inpaint_local_model_{name}.png", |
|
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png", |
|
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png", |
|
) |
|
|