|
import io |
|
import os |
|
import sys |
|
from typing import List, Optional |
|
|
|
from urllib.parse import urlparse |
|
import cv2 |
|
from PIL import Image, ImageOps, PngImagePlugin |
|
import numpy as np |
|
import torch |
|
from lama_cleaner.const import MPS_SUPPORT_MODELS |
|
from loguru import logger |
|
from torch.hub import download_url_to_file, get_dir |
|
import hashlib |
|
|
|
|
|
def md5sum(filename): |
|
md5 = hashlib.md5() |
|
with open(filename, "rb") as f: |
|
for chunk in iter(lambda: f.read(128 * md5.block_size), b""): |
|
md5.update(chunk) |
|
return md5.hexdigest() |
|
|
|
|
|
def switch_mps_device(model_name, device): |
|
if model_name not in MPS_SUPPORT_MODELS and str(device) == "mps": |
|
logger.info(f"{model_name} not support mps, switch to cpu") |
|
return torch.device("cpu") |
|
return device |
|
|
|
|
|
def get_cache_path_by_url(url): |
|
parts = urlparse(url) |
|
hub_dir = get_dir() |
|
model_dir = os.path.join(hub_dir, "checkpoints") |
|
if not os.path.isdir(model_dir): |
|
os.makedirs(model_dir) |
|
filename = os.path.basename(parts.path) |
|
cached_file = os.path.join(model_dir, filename) |
|
return cached_file |
|
|
|
|
|
def download_model(url, model_md5: str = None): |
|
cached_file = get_cache_path_by_url(url) |
|
if not os.path.exists(cached_file): |
|
sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file)) |
|
hash_prefix = None |
|
download_url_to_file(url, cached_file, hash_prefix, progress=True) |
|
if model_md5: |
|
_md5 = md5sum(cached_file) |
|
if model_md5 == _md5: |
|
logger.info(f"Download model success, md5: {_md5}") |
|
else: |
|
try: |
|
os.remove(cached_file) |
|
logger.error( |
|
f"Model md5: {_md5}, expected md5: {model_md5}, wrong model deleted. Please restart lama-cleaner." |
|
f"If you still have errors, please try download model manually first https://lama-cleaner-docs.vercel.app/install/download_model_manually.\n" |
|
) |
|
except: |
|
logger.error( |
|
f"Model md5: {_md5}, expected md5: {model_md5}, please delete {cached_file} and restart lama-cleaner." |
|
) |
|
exit(-1) |
|
|
|
return cached_file |
|
|
|
|
|
def ceil_modulo(x, mod): |
|
if x % mod == 0: |
|
return x |
|
return (x // mod + 1) * mod |
|
|
|
|
|
def handle_error(model_path, model_md5, e): |
|
_md5 = md5sum(model_path) |
|
if _md5 != model_md5: |
|
try: |
|
os.remove(model_path) |
|
logger.error( |
|
f"Model md5: {_md5}, expected md5: {model_md5}, wrong model deleted. Please restart lama-cleaner." |
|
f"If you still have errors, please try download model manually first https://lama-cleaner-docs.vercel.app/install/download_model_manually.\n" |
|
) |
|
except: |
|
logger.error( |
|
f"Model md5: {_md5}, expected md5: {model_md5}, please delete {model_path} and restart lama-cleaner." |
|
) |
|
else: |
|
logger.error( |
|
f"Failed to load model {model_path}," |
|
f"please submit an issue at https://github.com/Sanster/lama-cleaner/issues and include a screenshot of the error:\n{e}" |
|
) |
|
exit(-1) |
|
|
|
|
|
def load_jit_model(url_or_path, device, model_md5: str): |
|
if os.path.exists(url_or_path): |
|
model_path = url_or_path |
|
else: |
|
model_path = download_model(url_or_path, model_md5) |
|
|
|
logger.info(f"Loading model from: {model_path}") |
|
try: |
|
model = torch.jit.load(model_path, map_location="cpu").to(device) |
|
except Exception as e: |
|
handle_error(model_path, model_md5, e) |
|
model.eval() |
|
return model |
|
|
|
|
|
def load_model(model: torch.nn.Module, url_or_path, device, model_md5): |
|
if os.path.exists(url_or_path): |
|
model_path = url_or_path |
|
else: |
|
model_path = download_model(url_or_path, model_md5) |
|
|
|
try: |
|
logger.info(f"Loading model from: {model_path}") |
|
state_dict = torch.load(model_path, map_location="cpu") |
|
model.load_state_dict(state_dict, strict=True) |
|
model.to(device) |
|
except Exception as e: |
|
handle_error(model_path, model_md5, e) |
|
model.eval() |
|
return model |
|
|
|
|
|
def numpy_to_bytes(image_numpy: np.ndarray, ext: str) -> bytes: |
|
data = cv2.imencode( |
|
f".{ext}", |
|
image_numpy, |
|
[int(cv2.IMWRITE_JPEG_QUALITY), 100, int(cv2.IMWRITE_PNG_COMPRESSION), 0], |
|
)[1] |
|
image_bytes = data.tobytes() |
|
return image_bytes |
|
|
|
|
|
def pil_to_bytes(pil_img, ext: str, quality: int = 95, exif_infos={}) -> bytes: |
|
with io.BytesIO() as output: |
|
kwargs = {k: v for k, v in exif_infos.items() if v is not None} |
|
if ext == "png" and "parameters" in kwargs: |
|
pnginfo_data = PngImagePlugin.PngInfo() |
|
pnginfo_data.add_text("parameters", kwargs["parameters"]) |
|
kwargs["pnginfo"] = pnginfo_data |
|
|
|
pil_img.save( |
|
output, |
|
format=ext, |
|
quality=quality, |
|
**kwargs, |
|
) |
|
image_bytes = output.getvalue() |
|
return image_bytes |
|
|
|
|
|
def load_img(img_bytes, gray: bool = False, return_exif: bool = False): |
|
alpha_channel = None |
|
image = Image.open(io.BytesIO(img_bytes)) |
|
|
|
if return_exif: |
|
info = image.info or {} |
|
exif_infos = {"exif": image.getexif(), "parameters": info.get("parameters")} |
|
|
|
try: |
|
image = ImageOps.exif_transpose(image) |
|
except: |
|
pass |
|
|
|
if gray: |
|
image = image.convert("L") |
|
np_img = np.array(image) |
|
else: |
|
if image.mode == "RGBA": |
|
np_img = np.array(image) |
|
alpha_channel = np_img[:, :, -1] |
|
np_img = cv2.cvtColor(np_img, cv2.COLOR_RGBA2RGB) |
|
else: |
|
image = image.convert("RGB") |
|
np_img = np.array(image) |
|
|
|
if return_exif: |
|
return np_img, alpha_channel, exif_infos |
|
return np_img, alpha_channel |
|
|
|
|
|
def norm_img(np_img): |
|
if len(np_img.shape) == 2: |
|
np_img = np_img[:, :, np.newaxis] |
|
np_img = np.transpose(np_img, (2, 0, 1)) |
|
np_img = np_img.astype("float32") / 255 |
|
return np_img |
|
|
|
|
|
def resize_max_size( |
|
np_img, size_limit: int, interpolation=cv2.INTER_CUBIC |
|
) -> np.ndarray: |
|
|
|
h, w = np_img.shape[:2] |
|
if max(h, w) > size_limit: |
|
ratio = size_limit / max(h, w) |
|
new_w = int(w * ratio + 0.5) |
|
new_h = int(h * ratio + 0.5) |
|
return cv2.resize(np_img, dsize=(new_w, new_h), interpolation=interpolation) |
|
else: |
|
return np_img |
|
|
|
|
|
def pad_img_to_modulo( |
|
img: np.ndarray, mod: int, square: bool = False, min_size: Optional[int] = None |
|
): |
|
""" |
|
|
|
Args: |
|
img: [H, W, C] |
|
mod: |
|
square: 是否为正方形 |
|
min_size: |
|
|
|
Returns: |
|
|
|
""" |
|
if len(img.shape) == 2: |
|
img = img[:, :, np.newaxis] |
|
height, width = img.shape[:2] |
|
out_height = ceil_modulo(height, mod) |
|
out_width = ceil_modulo(width, mod) |
|
|
|
if min_size is not None: |
|
assert min_size % mod == 0 |
|
out_width = max(min_size, out_width) |
|
out_height = max(min_size, out_height) |
|
|
|
if square: |
|
max_size = max(out_height, out_width) |
|
out_height = max_size |
|
out_width = max_size |
|
|
|
return np.pad( |
|
img, |
|
((0, out_height - height), (0, out_width - width), (0, 0)), |
|
mode="symmetric", |
|
) |
|
|
|
|
|
def boxes_from_mask(mask: np.ndarray) -> List[np.ndarray]: |
|
""" |
|
Args: |
|
mask: (h, w, 1) 0~255 |
|
|
|
Returns: |
|
|
|
""" |
|
height, width = mask.shape[:2] |
|
_, thresh = cv2.threshold(mask, 127, 255, 0) |
|
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
|
|
boxes = [] |
|
for cnt in contours: |
|
x, y, w, h = cv2.boundingRect(cnt) |
|
box = np.array([x, y, x + w, y + h]).astype(int) |
|
|
|
box[::2] = np.clip(box[::2], 0, width) |
|
box[1::2] = np.clip(box[1::2], 0, height) |
|
boxes.append(box) |
|
|
|
return boxes |
|
|
|
|
|
def only_keep_largest_contour(mask: np.ndarray) -> List[np.ndarray]: |
|
""" |
|
Args: |
|
mask: (h, w) 0~255 |
|
|
|
Returns: |
|
|
|
""" |
|
_, thresh = cv2.threshold(mask, 127, 255, 0) |
|
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
|
|
max_area = 0 |
|
max_index = -1 |
|
for i, cnt in enumerate(contours): |
|
area = cv2.contourArea(cnt) |
|
if area > max_area: |
|
max_area = area |
|
max_index = i |
|
|
|
if max_index != -1: |
|
new_mask = np.zeros_like(mask) |
|
return cv2.drawContours(new_mask, contours, max_index, 255, -1) |
|
else: |
|
return mask |
|
|