|
import os |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
|
|
from lama_cleaner.helper import ( |
|
norm_img, |
|
get_cache_path_by_url, |
|
load_jit_model, |
|
) |
|
from lama_cleaner.model.base import InpaintModel |
|
from lama_cleaner.schema import Config |
|
|
|
LAMA_MODEL_URL = os.environ.get( |
|
"LAMA_MODEL_URL", |
|
"https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt", |
|
) |
|
LAMA_MODEL_MD5 = os.environ.get("LAMA_MODEL_MD5", "e3aa4aaa15225a33ec84f9f4bc47e500") |
|
|
|
|
|
class LaMa(InpaintModel): |
|
name = "lama" |
|
pad_mod = 8 |
|
|
|
def init_model(self, device, **kwargs): |
|
self.model = load_jit_model(LAMA_MODEL_URL, device, LAMA_MODEL_MD5).eval() |
|
|
|
@staticmethod |
|
def is_downloaded() -> bool: |
|
return os.path.exists(get_cache_path_by_url(LAMA_MODEL_URL)) |
|
|
|
def forward(self, image, mask, config: Config): |
|
"""Input image and output image have same size |
|
image: [H, W, C] RGB |
|
mask: [H, W] |
|
return: BGR IMAGE |
|
""" |
|
image = norm_img(image) |
|
mask = norm_img(mask) |
|
|
|
mask = (mask > 0) * 1 |
|
image = torch.from_numpy(image).unsqueeze(0).to(self.device) |
|
mask = torch.from_numpy(mask).unsqueeze(0).to(self.device) |
|
|
|
inpainted_image = self.model(image, mask) |
|
|
|
cur_res = inpainted_image[0].permute(1, 2, 0).detach().cpu().numpy() |
|
cur_res = np.clip(cur_res * 255, 0, 255).astype("uint8") |
|
cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR) |
|
return cur_res |
|
|