|
import gc |
|
|
|
import PIL.Image |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from loguru import logger |
|
|
|
from lama_cleaner.model.base import DiffusionInpaintModel |
|
from lama_cleaner.model.utils import torch_gc, get_scheduler |
|
from lama_cleaner.schema import Config |
|
|
|
|
|
class CPUTextEncoderWrapper: |
|
def __init__(self, text_encoder, torch_dtype): |
|
self.config = text_encoder.config |
|
self.text_encoder = text_encoder.to(torch.device("cpu"), non_blocking=True) |
|
self.text_encoder = self.text_encoder.to(torch.float32, non_blocking=True) |
|
self.torch_dtype = torch_dtype |
|
del text_encoder |
|
torch_gc() |
|
|
|
def __call__(self, x, **kwargs): |
|
input_device = x.device |
|
return [ |
|
self.text_encoder(x.to(self.text_encoder.device), **kwargs)[0] |
|
.to(input_device) |
|
.to(self.torch_dtype) |
|
] |
|
|
|
@property |
|
def dtype(self): |
|
return self.torch_dtype |
|
|
|
|
|
def load_from_local_model(local_model_path, torch_dtype, disable_nsfw=True): |
|
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( |
|
download_from_original_stable_diffusion_ckpt, |
|
) |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline |
|
|
|
logger.info(f"Converting {local_model_path} to diffusers pipeline") |
|
|
|
pipe = download_from_original_stable_diffusion_ckpt( |
|
local_model_path, |
|
num_in_channels=9, |
|
from_safetensors=local_model_path.endswith("safetensors"), |
|
device="cpu", |
|
) |
|
|
|
inpaint_pipe = StableDiffusionInpaintPipeline( |
|
vae=pipe.vae, |
|
text_encoder=pipe.text_encoder, |
|
tokenizer=pipe.tokenizer, |
|
unet=pipe.unet, |
|
scheduler=pipe.scheduler, |
|
safety_checker=None if disable_nsfw else pipe.safety_checker, |
|
feature_extractor=None if disable_nsfw else pipe.safety_checker, |
|
requires_safety_checker=not disable_nsfw, |
|
) |
|
|
|
del pipe |
|
gc.collect() |
|
return inpaint_pipe.to(torch_dtype=torch_dtype) |
|
|
|
|
|
class SD(DiffusionInpaintModel): |
|
pad_mod = 8 |
|
min_size = 512 |
|
|
|
def init_model(self, device: torch.device, **kwargs): |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline |
|
|
|
fp16 = not kwargs.get("no_half", False) |
|
|
|
model_kwargs = { |
|
"local_files_only": kwargs.get("local_files_only", kwargs["sd_run_local"]) |
|
} |
|
if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False): |
|
logger.info("Disable Stable Diffusion Model NSFW checker") |
|
model_kwargs.update( |
|
dict( |
|
safety_checker=None, |
|
feature_extractor=None, |
|
requires_safety_checker=False, |
|
) |
|
) |
|
|
|
use_gpu = device == torch.device("cuda") and torch.cuda.is_available() |
|
torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32 |
|
|
|
if kwargs.get("sd_local_model_path", None): |
|
self.model = load_from_local_model( |
|
kwargs["sd_local_model_path"], |
|
torch_dtype=torch_dtype, |
|
) |
|
else: |
|
self.model = StableDiffusionInpaintPipeline.from_pretrained( |
|
self.model_id_or_path, |
|
revision="fp16" if use_gpu and fp16 else "main", |
|
torch_dtype=torch_dtype, |
|
use_auth_token=kwargs["hf_access_token"], |
|
**model_kwargs, |
|
) |
|
|
|
|
|
self.model.enable_attention_slicing() |
|
|
|
if kwargs.get("enable_xformers", False): |
|
self.model.enable_xformers_memory_efficient_attention() |
|
|
|
if kwargs.get("cpu_offload", False) and use_gpu: |
|
|
|
logger.info("Enable sequential cpu offload") |
|
self.model.enable_sequential_cpu_offload(gpu_id=0) |
|
else: |
|
self.model = self.model.to(device) |
|
if kwargs["sd_cpu_textencoder"]: |
|
logger.info("Run Stable Diffusion TextEncoder on CPU") |
|
self.model.text_encoder = CPUTextEncoderWrapper( |
|
self.model.text_encoder, torch_dtype |
|
) |
|
|
|
self.callback = kwargs.pop("callback", None) |
|
|
|
def forward(self, image, mask, config: Config): |
|
"""Input image and output image have same size |
|
image: [H, W, C] RGB |
|
mask: [H, W, 1] 255 means area to repaint |
|
return: BGR IMAGE |
|
""" |
|
|
|
scheduler_config = self.model.scheduler.config |
|
scheduler = get_scheduler(config.sd_sampler, scheduler_config) |
|
self.model.scheduler = scheduler |
|
|
|
if config.sd_mask_blur != 0: |
|
k = 2 * config.sd_mask_blur + 1 |
|
mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis] |
|
|
|
img_h, img_w = image.shape[:2] |
|
|
|
output = self.model( |
|
image=PIL.Image.fromarray(image), |
|
prompt=config.prompt, |
|
negative_prompt=config.negative_prompt, |
|
mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"), |
|
num_inference_steps=config.sd_steps, |
|
guidance_scale=config.sd_guidance_scale, |
|
output_type="np.array", |
|
callback=self.callback, |
|
height=img_h, |
|
width=img_w, |
|
generator=torch.manual_seed(config.sd_seed), |
|
).images[0] |
|
|
|
output = (output * 255).round().astype("uint8") |
|
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) |
|
return output |
|
|
|
def forward_post_process(self, result, image, mask, config): |
|
if config.sd_match_histograms: |
|
result = self._match_histograms(result, image[:, :, ::-1], mask) |
|
|
|
if config.sd_mask_blur != 0: |
|
k = 2 * config.sd_mask_blur + 1 |
|
mask = cv2.GaussianBlur(mask, (k, k), 0) |
|
return result, image, mask |
|
|
|
@staticmethod |
|
def is_downloaded() -> bool: |
|
|
|
return True |
|
|
|
|
|
class SD15(SD): |
|
name = "sd1.5" |
|
model_id_or_path = "runwayml/stable-diffusion-inpainting" |
|
|
|
|
|
class Anything4(SD): |
|
name = "anything4" |
|
model_id_or_path = "Sanster/anything-4.0-inpainting" |
|
|
|
|
|
class RealisticVision14(SD): |
|
name = "realisticVision1.4" |
|
model_id_or_path = "Sanster/Realistic_Vision_V1.4-inpainting" |
|
|
|
|
|
class SD2(SD): |
|
name = "sd2" |
|
model_id_or_path = "stabilityai/stable-diffusion-2-inpainting" |
|
|