|
import torch |
|
import gc |
|
|
|
from loguru import logger |
|
|
|
from lama_cleaner.const import SD15_MODELS |
|
from lama_cleaner.helper import switch_mps_device |
|
from lama_cleaner.model.controlnet import ControlNet |
|
from lama_cleaner.model.fcf import FcF |
|
from lama_cleaner.model.lama import LaMa |
|
from lama_cleaner.model.ldm import LDM |
|
from lama_cleaner.model.manga import Manga |
|
from lama_cleaner.model.mat import MAT |
|
from lama_cleaner.model.paint_by_example import PaintByExample |
|
from lama_cleaner.model.instruct_pix2pix import InstructPix2Pix |
|
from lama_cleaner.model.sd import SD15, SD2, Anything4, RealisticVision14 |
|
from lama_cleaner.model.utils import torch_gc |
|
from lama_cleaner.model.zits import ZITS |
|
from lama_cleaner.model.opencv2 import OpenCV2 |
|
from lama_cleaner.schema import Config |
|
|
|
models = { |
|
"lama": LaMa, |
|
"ldm": LDM, |
|
"zits": ZITS, |
|
"mat": MAT, |
|
"fcf": FcF, |
|
SD15.name: SD15, |
|
Anything4.name: Anything4, |
|
RealisticVision14.name: RealisticVision14, |
|
"cv2": OpenCV2, |
|
"manga": Manga, |
|
"sd2": SD2, |
|
"paint_by_example": PaintByExample, |
|
"instruct_pix2pix": InstructPix2Pix, |
|
} |
|
|
|
|
|
class ModelManager: |
|
def __init__(self, name: str, device: torch.device, **kwargs): |
|
self.name = name |
|
self.device = device |
|
self.kwargs = kwargs |
|
self.model = self.init_model(name, device, **kwargs) |
|
|
|
def init_model(self, name: str, device, **kwargs): |
|
if name in SD15_MODELS and kwargs.get("sd_controlnet", False): |
|
return ControlNet(device, **{**kwargs, "name": name}) |
|
|
|
if name in models: |
|
model = models[name](device, **kwargs) |
|
else: |
|
raise NotImplementedError(f"Not supported model: {name}") |
|
return model |
|
|
|
def is_downloaded(self, name: str) -> bool: |
|
if name in models: |
|
return models[name].is_downloaded() |
|
else: |
|
raise NotImplementedError(f"Not supported model: {name}") |
|
|
|
def __call__(self, image, mask, config: Config): |
|
self.switch_controlnet_method(control_method=config.controlnet_method) |
|
return self.model(image, mask, config) |
|
|
|
def switch(self, new_name: str, **kwargs): |
|
if new_name == self.name: |
|
return |
|
try: |
|
if torch.cuda.memory_allocated() > 0: |
|
|
|
torch.cuda.empty_cache() |
|
del self.model |
|
gc.collect() |
|
|
|
self.model = self.init_model( |
|
new_name, switch_mps_device(new_name, self.device), **self.kwargs |
|
) |
|
self.name = new_name |
|
except NotImplementedError as e: |
|
raise e |
|
|
|
def switch_controlnet_method(self, control_method: str): |
|
if not self.kwargs.get("sd_controlnet"): |
|
return |
|
if self.kwargs["sd_controlnet_method"] == control_method: |
|
return |
|
if not hasattr(self.model, "is_local_sd_model"): |
|
return |
|
|
|
if self.model.is_local_sd_model: |
|
|
|
if ( |
|
self.model.is_native_control_inpaint |
|
and control_method != "control_v11p_sd15_inpaint" |
|
): |
|
raise RuntimeError( |
|
f"--sd-local-model-path load a normal SD model, " |
|
f"to use {control_method} you should load an inpainting SD model" |
|
) |
|
elif ( |
|
not self.model.is_native_control_inpaint |
|
and control_method == "control_v11p_sd15_inpaint" |
|
): |
|
raise RuntimeError( |
|
f"--sd-local-model-path load an inpainting SD model, " |
|
f"to use {control_method} you should load a norml SD model" |
|
) |
|
|
|
del self.model |
|
torch_gc() |
|
|
|
old_method = self.kwargs["sd_controlnet_method"] |
|
self.kwargs["sd_controlnet_method"] = control_method |
|
self.model = self.init_model( |
|
self.name, switch_mps_device(self.name, self.device), **self.kwargs |
|
) |
|
logger.info(f"Switch ControlNet method from {old_method} to {control_method}") |
|
|