|
import json |
|
|
|
import cv2 |
|
import numpy as np |
|
from loguru import logger |
|
|
|
from lama_cleaner.helper import download_model |
|
from lama_cleaner.plugins.base_plugin import BasePlugin |
|
from lama_cleaner.plugins.segment_anything import SamPredictor, sam_model_registry |
|
|
|
|
|
SEGMENT_ANYTHING_MODELS = { |
|
"vit_b": { |
|
"url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth", |
|
"md5": "01ec64d29a2fca3f0661936605ae66f8", |
|
}, |
|
"vit_l": { |
|
"url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth", |
|
"md5": "0b3195507c641ddb6910d2bb5adee89c", |
|
}, |
|
"vit_h": { |
|
"url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", |
|
"md5": "4b8939a88964f0f4ff5f5b2642c598a6", |
|
}, |
|
} |
|
|
|
|
|
class InteractiveSeg(BasePlugin): |
|
name = "InteractiveSeg" |
|
|
|
def __init__(self, model_name, device): |
|
super().__init__() |
|
model_path = download_model( |
|
SEGMENT_ANYTHING_MODELS[model_name]["url"], |
|
SEGMENT_ANYTHING_MODELS[model_name]["md5"], |
|
) |
|
logger.info(f"SegmentAnything model path: {model_path}") |
|
self.predictor = SamPredictor( |
|
sam_model_registry[model_name](checkpoint=model_path).to(device) |
|
) |
|
self.prev_img_md5 = None |
|
|
|
def __call__(self, rgb_np_img, files, form): |
|
clicks = json.loads(form["clicks"]) |
|
return self.forward(rgb_np_img, clicks, form["img_md5"]) |
|
|
|
def forward(self, rgb_np_img, clicks, img_md5): |
|
input_point = [] |
|
input_label = [] |
|
for click in clicks: |
|
x = click[0] |
|
y = click[1] |
|
input_point.append([x, y]) |
|
input_label.append(click[2]) |
|
|
|
if img_md5 and img_md5 != self.prev_img_md5: |
|
self.prev_img_md5 = img_md5 |
|
self.predictor.set_image(rgb_np_img) |
|
|
|
masks, scores, _ = self.predictor.predict( |
|
point_coords=np.array(input_point), |
|
point_labels=np.array(input_label), |
|
multimask_output=False, |
|
) |
|
mask = masks[0].astype(np.uint8) * 255 |
|
|
|
kernel_size = 9 |
|
mask = cv2.dilate( |
|
mask, np.ones((kernel_size, kernel_size), np.uint8), iterations=1 |
|
) |
|
|
|
res_mask = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8) |
|
res_mask[mask == 255] = [255, 203, 0, int(255 * 0.73)] |
|
res_mask = cv2.cvtColor(res_mask, cv2.COLOR_BGRA2RGBA) |
|
return res_mask |
|
|