import PIL.Image import cv2 import torch from loguru import logger from lama_cleaner.model.base import DiffusionInpaintModel from lama_cleaner.model.utils import set_seed from lama_cleaner.schema import Config class InstructPix2Pix(DiffusionInpaintModel): name = "instruct_pix2pix" pad_mod = 8 min_size = 512 def init_model(self, device: torch.device, **kwargs): from diffusers import StableDiffusionInstructPix2PixPipeline fp16 = not kwargs.get('no_half', False) model_kwargs = {"local_files_only": kwargs.get('local_files_only', False)} if kwargs['disable_nsfw'] or kwargs.get('cpu_offload', False): logger.info("Disable Stable Diffusion Model NSFW checker") model_kwargs.update(dict( safety_checker=None, feature_extractor=None, requires_safety_checker=False )) use_gpu = device == torch.device('cuda') and torch.cuda.is_available() torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32 self.model = StableDiffusionInstructPix2PixPipeline.from_pretrained( "timbrooks/instruct-pix2pix", revision="fp16" if use_gpu and fp16 else "main", torch_dtype=torch_dtype, **model_kwargs ) self.model.enable_attention_slicing() if kwargs.get('enable_xformers', False): self.model.enable_xformers_memory_efficient_attention() if kwargs.get('cpu_offload', False) and use_gpu: logger.info("Enable sequential cpu offload") self.model.enable_sequential_cpu_offload(gpu_id=0) else: self.model = self.model.to(device) def forward(self, image, mask, config: Config): """Input image and output image have same size image: [H, W, C] RGB mask: [H, W, 1] 255 means area to repaint return: BGR IMAGE edit = pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7).images[0] """ output = self.model( image=PIL.Image.fromarray(image), prompt=config.prompt, negative_prompt=config.negative_prompt, num_inference_steps=config.p2p_steps, image_guidance_scale=config.p2p_image_guidance_scale, guidance_scale=config.p2p_guidance_scale, output_type="np.array", generator=torch.manual_seed(config.sd_seed) ).images[0] output = (output * 255).round().astype("uint8") output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) return output # # def forward_post_process(self, result, image, mask, config): # if config.sd_match_histograms: # result = self._match_histograms(result, image[:, :, ::-1], mask) # # if config.sd_mask_blur != 0: # k = 2 * config.sd_mask_blur + 1 # mask = cv2.GaussianBlur(mask, (k, k), 0) # return result, image, mask @staticmethod def is_downloaded() -> bool: # model will be downloaded when app start, and can't switch in frontend settings return True